A Robust Transcortical Profile Scanner for Generating 2-D Traverses in Histological Sections of Richly Curved Cortical Courses

O. Schmitt and M. Böhme
Institut für Anatomie, Medical University Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany

Received May 21, 2001

Quantitative analysis of the cerebral cortex has become more important since neuroimaging methods have revealed many subfunctions of cortical regions that were thought to be typical for only one specific function. Furthermore, it is often unknown if a certain area may be subdivided observer independently into subareas. These questions lead to an analytical problem. How can we analyze the cytoarchitecture of the human cerebral cortex in a quantitative manner in order to confirm classical transition regions between distinct areas and to detect new ones. Scanning the cerebral cortex is difficult because it presents a richly curved course and sectioning always leads to partially nonperpendicular sectioned regions of the tissue. Therefore, different methods were tested to determine which of them are most reliable with respect to generating perpendicular test-lines in the cerebral cortex. We introduce a new technique based on electrical field theory. The results of this technique are compared with those of conventional techniques. It was found that straight traverses generated by the electrodynamic model present significantly smaller intertraversal differences than the conventional approaches.

Key Words: cortex cerebri; mapping; profiles; traverses; transcortical scanning; image analysis; videomicroscopy; transparent flat bed scanning.

INTRODUCTION

Quantifying the distribution of neurons of the human cortex cerebri has been carried out by image analysis (Adhami, 1973; Amunts et al., 1995–2000; Geyer et al., 1996–2000; Hudspeth et al., 1976; Sauer, 1983; Schleicher et al., 1978; Schleicher and Zilles, 1983; Semendeferi et al., 1998; Wree et al., 1981–1983) and morphometry followed by stereological estimation techniques (Haug, 1986; Holm and West, 1994; Pakkenberg and Gundersen, 1997; West, 1990, 1993; West and Gundersen, 1990; West and Slomianka, 1998; West et al., 1988, 1991, 1993, 1994) since it provides architectural data derived from different techniques like histology, histochemistry, immunohistochemistry, and in situ hybridization. Image analysis is a powerful method that is useful for quantitative neuroanatomy because it enables the analysis of large and numerous cortical samples with high precision. Since the brain exhibits a complex three-dimensional structure, it would be desirable to perform structural analysis directly on a three-dimensional representation of the brain. However, methods such as the 3-D segmentation of overlapping projections of neuronal profiles within the histologic section space and classification of segmented neuronal profiles have high computational complexity and will cause most current systems to reach their limits. Three-dimensional approaches will be the methods of choice once sufficient computational power becomes available. For the moment, though, simple scanning procedures of the specimens like digitizing or scanning of profiles within the image can be considered as a method of low complexity that offers an adequate tool for quantitative analysis of neuronal tissue. If these data are obtained at a light microscopic or high scanner resolution level, cytoarchitectonic details become visible. Since cytoarchitecture can be considered as one of many modalities that characterize the individual architecture of different areas, it delivers the basic information for the detection of areal borders because the transition regions (Schleicher et al., 1987, 1999, 2000; Schleicher and Zilles, 1990) between different areas can not be determined exactly by macroscopic features like the sulcus-gyrus pattern (Geyer et al., 1996, 1999, 2000; Amunts et al., 1999, 2000).

The distribution of neurons produces horizontal (lamination) and vertical (columnar) patterns within the cerebral cortex, which is a typical structural feature of the human brain. This inherent structure is used to subdivide the cerebral cortex into distinct areas. Cortical areas are delineated by the pial surface, cortex-white matter border and borders of neighboring areas. Neighboring cortical areas possess different cytoarchitectonic laminations. It is assumed that each
cortical area consists of a homogeneous distribution pattern of neurons or architecture. The characteristic homogeneous distribution pattern of neurons within a certain cortical area offers structural information which can be mapped in 3D-reconstructions (Amunts et al., 2000; Geyer et al., 1997, 1999, 2000; Roland and Zilles, 1998; Schmitt et al., 1999a, 1999b; Schormann and Zilles, 1998; Zilles et al., 1995). This kind of mapping is important for projections of functional features into the structural map and for locating and comparing different functions with different cytoarchitectonics.

Especially the lamination can be visualized and analyzed after digitizing and image processing of sections through the cerebral cortex. The quantitative analysis of the lamination is useful especially for observer independent delineation of cortical areas and the detection of their transition regions (Schleicher et al., 1999, 2000). This kind of observer independent detection of areas appears to be valuable since there exists an extensive controversy over the location of cytoarchitectonically distinct cortical areas (Bailey and Bonin, 1951; Brodmann, 1909; Campbell, 1905; Economo and Koskinas, 1925; Sarkissov et al., 1955; Smith, 1907). After digitizing histological sections (Schleicher and Zilles, 1990; Schmitt and Eggers, 1999), architectural data can be extracted by a geometric algorithm that operates on sets of very large images (Montgomery, 1996; Laroche, 1998). There exist several techniques to calculate orthogonal lines (traverses) to the pial surface of the cortex ending at the white matter border. Along these traverses the values of pixels of the image can be read out and written into vectors which are also known as profiles. By analyzing such profiles we can extract structural information (distribution of local maxima and minima, points of inflection, shape) and use these parameters in order to characterize and quantitatively differentiate several types of horizontal distribution pattern, i.e., the lamination of different cortical areas (Amunts et al., 1995–2000; Geyer et al., 1996–2000; Schleicher et al., 1987, 1999, 2000; Schleicher and Zilles, 1990; Semendeferi et al., 1998; Wree et al., 1981–1983). Consecutive profiles of a certain cortical area represent its quantified layering pattern and are called fingerprints; this term was introduced by Hudspeth et al. (1976). A traverse that lies exactly perpendicular to the lamination will lead to larger local gradients in the profile than traverses that have an oblique orientation to the principal direction of the lamination. The oblique traverse will produce a profile in which gradients are smaller, leading to some degree of blurring. If transition regions between areas are to be detected by a certain kind of analysis, for example a statistical test (Schleicher et al., 1987, 1999, 2000; Schleicher and Zilles, 1990), then such blurring could influence the results. The influence is particularly strong if the lamination is presented by small gradients in the profile and/or by minor changes in the lamination pattern. Therefore, it is important to use an algorithm that calculates optimal traverses with respect to the principal orientation of laminae, even if they are arranged in a not completely parallel way.

Furthermore, the orientation of sections may vary according to the position of the tissue block in the embedding media. Even if we assume that the direction of sectioning is relatively orthogonal to the pial surface, its course is strongly curved. The profoundly convoluted cortical surface leads to the traverses-construction-problem (TCP): how should an orthogonal traverse be calculated? This problem is not trivial because tangentially sectioned regions are embedded in the richly curved convex-concave cortical surface (Griffin, 1994). Unsufficient orthogonality of traverses may influence the results of the averaged profiles and also statistical comparisons between them. Therefore, it is important to use a technique which generates robust orthogonal traverses. A further constraint is that traverses should not intersect, since intersections lead to distortions in the resulting profiles.

It is difficult, however, to give a precise mathematical definition of the traverses construction problem. The two constraints mentioned (orthogonality, no intersections) still allow a wealth of different solutions. For this reason, we will present parameters that can be used to measure traverse quality.

This study was motivated because intersections were frequently observed in traverses which were calculated using a centerline between the outer and the inner contour (Schleicher et al., 1998, 1999; Schmitt et al., 1998) of the curved regions of the cerebral cortex. The objective of this study is to compare the results of different algorithms that generate traverses. A new technique has been developed that calculates traverses without considering special conditions or employing a priori knowledge about the curved cortical contour. Therefore, it works more reliably with respect to unforeseen geometrical situations and the resulting problems for those traverse calculation algorithms which minimize geometrical parameters (intersection angle of contours with the traverse, uniformity of traverse orientation, distance between traverses) (Schleicher et al., 2000) or which employ smoothing steps and special algorithmic conditions to avoid traverse crossings at extremely curved parts of the inner and outer contours.

MATERIAL AND METHODS

A 65-year-old male human brain without any neuropathological changes was sectioned into 6112 coronal paraffin sections (human neuroscanning project). The postmortem delay was 11 h. The 20-μm-thick sections were stained in Gallocyanin chromalum (Schmitt and Eggers, 1997a). This staining has the advantage that perikarya of different regions in the sections are stained more homogeneously (Schmitt and Eggers,
TRANSCORTICAL SCANNING

1997b) than with the often used cresyl violet or silver staining method (Merker, 1983). However, further sections of a second specimen of a human brain (65-year-old female without any neuropathological changes; 12 h postmortem delay) around area 4 were produced and stained according to Merker (1983) in order to test the new algorithms under extreme conditions of cortical curvature. Inhomogeneous staining and section thickness variation either have to be avoided or corrected by applying the GLI-transformation (Schleicher and Zilles, 1990; Schleicher et al., 2000) in order to obtain unbiased density profiles of the cortex. This was not performed here because the profiles were not analyzed for transition regions. The stained sections were digitized by a high resolution transparent flat bed scanner (FBS) (Agfa, Duoscan) as described by Schmitt and Eggers (1999). The resolution of the FBS images is 12.5 \(\mu \text{m/pixel} \). The largest section has a size of about 11,000 \(\times \) 7,000 pixels and a dynamic range of 8 bit. To test and develop the algorithms, an image of section 117 from the first brain was used; this is a section through the occipital lobe that includes areas 17 to 19. Later on, the algorithms were tested on more sections from both brains. For section 117, only one strongly curved section at the same cortical region was analyzed in all cases in order to obtain comparable results. The right hemisphere was cut out of the whole image (Fig. 1). This section exhibits good histological quality with respect to its thickness and size. Some smaller foldings within the white matter could not be avoided. However, these foldings do not substantially affect the resulting profile pattern. In the sample image the pial (outer border) and the white matter (inner border) contour were interactively marked using a MatLab script (MatLab 6) (Fig. 4). The result of this interactive step are two polygonal lines which are used later on to calculate the traverses. The points which are input by the user are connected by straight-line segments (linear interpolation); i.e., no spline interpolation or similar smoothing is performed.

Four different approaches to the traverses construction problem are considered in this study. The first involves stepping down a centerline between the inner and outer contours of the cortex and generating traverses which are orthogonal to the centerline and terminate at the contours (Schleicher et al., 1999). The centerline was generated by connecting the midpoints of traverses generated using the electrodynamics algorithm described below. This technique should only be applied at relatively straight outer and inner contour paths. Therefore, it is of limited usefulness because gyrencephalic cortices possess strongly convex concave surfaces, and it will not be included in the statistical comparison of the various approaches. The second approach, which will be called the equal angles algorithm, generates traverses by minimizing the difference of the angles where the traverse intersects the inner and outer contour.

The third approach (Schleicher et al., 2000) works by minimizing the length of the traverses and then employing corrective heuristics to optimize traverse placement.

The fourth approach uses a physical model based on electric field lines. Electric field theory and electric dynamic principles will not be described here since they have been published in great detail, e.g., in Feynman (1971), Zahn (1979), and Kraus (1984). The concept of electric field theory with respect to the problem of traverse calculation will be described briefly, and the formulas and algorithms to compute traverses will be presented in detail.

For the electrodynamics method, the inner and outer contour of the cortex are assumed to be electrically charged, one with a positive charge and the other with a negative charge. This leads to an electrical field around and in between the contours, the field lines originating on one contour and terminating on the other. These field lines will be used as traverses.

Electrical field lines exhibit several properties that make them suitable for determining traverses. First, it can be shown that field lines never intersect. This is obviously an important property and one which may be hard to attain using other approaches. However, note that intersections may occur if the field lines are not computed with sufficient accuracy. Second, the field lines intersect the contours at right angles. This property is also desirable, since the traverses should be perpendicular to the lamination pattern of the cerebral cortex. Third, field lines can be curved, reflecting the curvature of the inner and outer border of the cerebral cortex. However, straight lines can be generated easily if desired by connecting the points where the field lines intersect the contours.

As noted earlier, a contour \(C \) is a polygon; its vertices will be denoted by \(c^{(1)}, \ldots, c^{(n)} \). To compute the electric field \(E_C \) of the entire contour, it is decomposed into straight-line segments, and the superposition of the fields for these individual segments yields the field for the entire contour. Thus, we have

\[
E_C(x) = \sum_{j=1}^{n-1} E_{c^{(j)}, c^{(j+1)}}(x),
\]

where \(x \) is the point for which the field is to be computed. What remains is to determine \(E_{c^{(j)}, c^{(j+1)}} \)—the field of the charged line segment from \(c^{(j)} \) to \(c^{(j+1)} \). This can be obtained by integrating the field of a point charge

\[
E_{\text{point}}(x) = \frac{x}{\|x\|} \cdot \frac{1}{|x|^2}
\]

over the length of the line segment. (Constants have been omitted from the formula since they are not...
FIG. 1. Top: an FBS-image of a very large scale digital scan of section 117 through the human occipital lobe is shown. The images are mirrored because the analog object was projected during digitalization. Therefore, the left side of the section corresponds to the right side of the image. Below: an enlargement of the right occipital lobe. The transition regions of area 17 to 18 are marked by arrows. The enlarged sample image is used to test the algorithms.
needed in this context.) To facilitate the computation, a coordinate system is chosen that places the line segment on the x-axis and the point for which the electric field is to be computed is at coordinate z on the y-axis.

Integration of \(E_{\text{point}} \) then yields the horizontal and vertical components \(E_1 \) and \(E_2 \) of the electric field which are

\[
E_1(a, b, z) = \frac{1}{\sqrt{z^2 + b^2}} - \frac{1}{\sqrt{z^2 + a^2}}
\]

\[
E_2(a, b, z) = \frac{1}{z} \left(\frac{b}{\sqrt{z^2 + b^2}} - \frac{a}{\sqrt{z^2 + a^2}} \right)
\]

where the quantities \(a, b, \) and \(z \) are as indicated in Fig. 2.

In general, the line segments will be arbitrarily positioned within the coordinate system, and so a transformation of coordinate systems has to be made, the values for \(a, b, \) and \(z \) being obtained by projection of \(c^{(i)}, c^{(i+1)} \), and \(x \) onto the vectors \(p \) and \(n \), which run parallel and normal to the line segment, respectively (see Fig. 3). The field of the line segment from \(c^{(i)} \) to \(c^{(i+1)} \) is thus

\[
E_{c^{(i)},c^{(i+1)}}(x) = \left(E_1(a, b, z) \cdot p \right)
\]

\[
E_{c^{(i)},c^{(i+1)}}(x) = \left(E_2(a, b, z) \cdot n \right)
\]

where

\[
p = \frac{c^{(i+1)} - c^{(i)}}{\|c^{(i+1)} - c^{(i)}\|} = \left(p_1 \right)
\]

\[
n = \left(-p_2 \right)
\]

\[
a = \langle c^{(i)} - x, p \rangle
\]

\[
b = \langle c^{(i+1)} - x, p \rangle
\]

\[
z = \langle x - c^{(i)}, n \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the scalar product. Finally, the respective fields for the two contours \(C_1 \) and \(C_2 \) are...
combined to give the total electric field \(\mathbf{E} \); the field for the second contour is given a negative sign since the contours are oppositely charged. This yields

\[
\mathbf{E}(x) = \mathbf{E}_{c_1}(x) - \mathbf{E}_{c_2}(x).
\]

This model will be referred to as the real physics model (RP).

A modification to this formula was derived that decreases the influence of a contour the closer the point \(x \) gets to it; this will be referred to as the modified electrodynamics model (MP). This model no longer reflects physical reality but has the advantage that the roughness of the contour has a weaker effect on the direction of the resulting traverse. For this modified model, the above formula becomes

\[
\mathbf{E}(x) = \mathbf{E}_{c_1}(x) \cdot \frac{d_{c_1}(x)}{d_{c_1}(x) + d_{c_2}(x)} - \mathbf{E}_{c_2}(x) \cdot \frac{d_{c_2}(x)}{d_{c_1}(x) + d_{c_2}(x)}
\]

where

\[
d_c(x) = (\min\{\|x - c^1\|, \ldots, \|x - c^n\|\})^\alpha
\]

The quantity \(\alpha \) is a parameter that can be used to control how strongly the influence of the closer contour is diminished. In the results presented here, a value of 0.8 was chosen for \(\alpha \).

A field line is computed by introducing a positive test charge close to the positively charged contour and then simulating the movement of the charge through the electric field. The traverse is now the path taken by the test charge or—optionally—a straight line between the points where this path intersects the contours. These two different methods of constructing traverses will be designated by the suffixes -C (for curved) and -S (for straight); this gives us four different variants of the electrodynamics algorithm: RP-S, RP-C, MP-S, and MP-C.

To compute the next field line, the starting point for the test charge is moved a fixed distance down the contour. This continues until the end of the contour is reached. The starting points are thus placed at equal distances along one of the contours.

In a region where the cortex is relatively straight, the distances between the traverses on the opposite contour will be approximately equal, too. However, in a region where the cortex is strongly curved, the traverses will be much closer together on the inside of the curve than on its outside. This leads to a problem if the starting points are on the inside contour. Within a strong curve, the distances between the traverses can become relatively large on the outside contour. For this reason, the algorithm described here will detect such a situation and react by exchanging the roles of the two contours. This means that the starting points for the test charges will move to the outside of the curve, ensuring that the traverses remain evenly spaced.

To simulate the movement of the test charge, iterative methods were used with the test charge moving in steps of a certain size. A sequence of points \(t_0, t_1, t_2, \ldots \) is thus computed, terminating when the test charge reaches the opposite contour.

For the iteration step, two different numerical methods were implemented (Schwarz, 1988). Initially, Euler’s method was used, but the results were not sufficiently accurate. It was replaced with a second-order Runge-Kutta method, which delivered satisfactory results. For this method, the iteration step is

\[
\hat{t} = t + \frac{\mathbf{E}(t)}{\|\mathbf{E}(t)\|} \cdot \frac{\delta}{2}
\]

\[
t_{i+1} = t_i + \frac{\mathbf{E}(\hat{t})}{\|\mathbf{E}(\hat{t})\|} \cdot \delta,
\]

where \(\delta \) is the size of the step to be taken.

It should be pointed out that the electrodynamic approach can easily be extended to three dimensions by replacing the charged contour lines with charged contour surfaces. The field lines can then be computed in exactly the same way as for the two-dimensional case.

RESULTS

Figure 1 shows the image through the right occipital lobe. The transition regions between areas 17 and 18 are marked by arrows. The inner and outer borders of the cortical region of interest are shown in Fig. 4. The figure also shows the traverses generated by the various algorithms. In comparing the four methods, the centerline algorithm (CL) appears to be the most error-prone. In regions of strong curvature, the traverses will often miss the inner contour and continue past it. This results in traverses which are much longer than their neighbors, are not orthogonal to the lamination and cross other traverses. These traverses are clearly unsuitable for the detection of transition regions.

In comparison, the equal angles algorithm (EA) produces better results (Fig. 4). However, intersections of traverses still occur; furthermore, in some cases there is a substantial difference in direction between neighboring traverses, even where the cortex is relatively straight and one would therefore expect to see roughly parallel traverses. This may likewise lead to difficulties in the detection of transition regions; quantitative data to support this will be presented further on.
FIG. 4. All traverses are generated at a intertraverse distance of 40 pixels on the outer contour (pial surface). CL, centerline method. EA, equal angle method. RP, standard electrodynamic model (C, curved; S, straight). MP, modified electrodynamic model (C, curved; S, straight). S, length minimization technique of Schleicher et al. (2000). The centerline algorithm produces more degenerate traverses than the equal angles technique.
The undesirable properties of the equal angles and centerline algorithms are absent in the traverses generated by the electrodynamics algorithms (standard electrodynamics algorithm, straight (RP-S) and curved traverses (RP-C); modified electrodynamics algorithm, straight (MP-S) and curved (MP-C)) (Fig. 4). The results confirm the theoretical prediction that traverses generated in this way should not intersect.

The length minimization algorithm also produces traverses of good quality without intersections (Fig. 4).

To assess the quality of the traverses and thus of the fingerprint that was generated using them, we analyzed the differences between neighboring profiles.

The difference between two adjacent profiles can be expected to be quite small, especially since the columnar structure is not as clearly visible at the resolutions that were used as in videomicroscopic imaging. Furthermore, small columns have a thickness that corresponds to the diameter of pyramidal cells of the column. When a traverse hits the border of a column then a large difference will result. Within the column, and this depends on the resolution of the image, the column diameter and the distance between the traverses, the differences of adjacent profiles will be of the same magnitude as outside the column. When the traverse hits the second border of a column, the second large difference will be measured. Because we compared different algorithms, all of them will pass the same structures and therefore comparable large profile intensity differences around columnar structures. At least, it is improbable that the majority of the columns are sectioned exactly parallel to the generated traverses, which would maximize profile intensity differences. Of course, there will always be a certain difference between the two traverses—otherwise, the fingerprint would be completely homogeneous in the horizontal direction.

If two different traverse sets have been produced for the same stretch of cortex, then it seems reasonable to consider those traverses as inferior that exhibit larger differences between neighboring profiles—on top of the differences which are inevitable because of the cortical structure, these traverses are generating excess differences, perhaps because they are not as well aligned as the traverses from the other set.

We therefore use profile differences as a measure of traverse quality—the smaller, the better. A second, derived parameter that we examine is the (numerically approximated) derivative of the profile differences. The motivation for this is the following: Along the fingerprint, the profile differences will vary in magnitude. Areas where the lamination pattern changes will produce larger profile differences, for instance. However, one would expect those profiles with large differences to be clustered together. An isolated large profile difference—corresponding to a large derivative—is indicative of a misplaced traverse.

In order to facilitate the comparison of the results of all traverse generators at different intertraverse distances (1, 2, 4, 8, 16, 32, 64 and 128 pixels), all fingerprints are summarized in Fig. 5. All profile lengths were normalized to 128 pixels. A plot directly below each fingerprint shows the profile differences across the width of the fingerprints. A second plot below the first shows the (approximated) derivative of the profile differences.

For small intertraverse distances, the electrodynamics algorithms produce differences that are much smaller than for the centerline and equal angle algorithms and slightly smaller than for Schleicher’s length minimization algorithm. The derivative plots confirm these results.

The difference plots for large traverse distances are similar for all algorithms; this is because they are not very indicative of an algorithm’s performance. Due to the distance between the traverses, there is no strong correlation between the relative alignment of two traverses and the magnitude of difference between the resulting profiles.

Three fingerprints and diagrams, those of the modified physics algorithm, centerline and equal angle method for traverse distance one, are shown in more detail in Fig. 6. Areal borders as well as the laminae can be assigned to the fingerprints. Typically those regions of the delineated cerebral cortex that have an intense curvature lead to strong disturbances in the fingerprint generated by the centerline algorithm as indicated by arrows in Fig. 6. Not optimally orientated traverses are produced by the equal angle technique, too. However, they do not occur as often as with the centerline method; some stronger disturbances in the fingerprint are indicated by arrows (Fig. 6).

In order to decide which algorithm produces the smallest differences between adjacent traverses, the maxima and mean values of the difference derivatives were computed (Table 1; Fig. 8). The length minimization algorithm is not able to generate meaningful traverses for large traverse distances, and so no results...
FIG. 6. A selection of cortical fingerprints from Fig. 5 with intertraverse distance one are shown here in greater detail. The MP-S method offers the best results followed by the RP-S method which is not shown here. The centerline (CL) and equal angle (EA) techniques show some disturbances in their fingerprints as indicated by arrows. The fingerprints of the three methods are scaled in the same way and can be compared directly. The top diagram below each fingerprint plots the differences between adjacent profiles which are largest for the CL method. The approximated derivative of the first plot is depicted in the second diagram. The differences are smaller for the equal angle technique and smallest for the MP-S method. The laminae are clearly visible and described in the MP-S fingerprint.
Maximum and Mean Difference Derivatives of Gray Values of Adjacent Traverses

<table>
<thead>
<tr>
<th>Distance</th>
<th>Maxima of derivative</th>
<th>Mean values of derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RP-S</td>
<td>RP-C</td>
</tr>
<tr>
<td></td>
<td>RP-S</td>
<td>RP-C</td>
</tr>
<tr>
<td>1</td>
<td>354</td>
<td>570</td>
</tr>
<tr>
<td>2</td>
<td>730</td>
<td>1691</td>
</tr>
<tr>
<td>4</td>
<td>1938</td>
<td>2537</td>
</tr>
<tr>
<td>8</td>
<td>3175</td>
<td>5526</td>
</tr>
<tr>
<td>16</td>
<td>4795</td>
<td>5239</td>
</tr>
<tr>
<td>32</td>
<td>2594</td>
<td>1541</td>
</tr>
<tr>
<td>64</td>
<td>2588</td>
<td>1831</td>
</tr>
<tr>
<td>128</td>
<td>3179</td>
<td>1951</td>
</tr>
</tbody>
</table>

Note. Distance between two traverses is given in pixels. RP, original electrodynamic model; MP, modified electrodynamic model (S, straight traverses; C, curved traverses); CL, centerline; EA, equal angles; S, length minimization algorithm of Schleicher et al. (2000). Algorithm S was not able to compute traverses at distance 128, therefore no results are given for this combination. This table is visualized in Fig. 8.

are given for this algorithm at a traverse distance of 128. The centerline method yields the largest maxima and largest mean values, followed by the equal angle algorithm, the length minimization algorithm, and finally the electrodynamic algorithms. If distances between traverses are larger than four, the mean derivatives of the equal angle algorithm, the length minimization algorithm and the electrodynamic techniques lie close together. At an intertraverse distance of 64 pixels, the equal angle and length minimization algorithms produced slightly better results than the real physics model with straight traverses (RP-S).

Considering the mean derivatives from a realistic analytical point of view for intertraverse distances between 1 and 8 pixels, the straight traverses generated by the electrodynamic model are slightly better than the curved ones (Fig. 8). The standard (mean derivative: 26) and the modified (mean derivative: 27) electrodynamic models with straight traverses give the best results at an intertraverse distance of one pixel. The MP-S technique was also tested on sections from the second brain; two different cortical regions around area 4 that depict a strong curvature were analyzed (Fig. 7). These sections were stained according to Merker (1983). The fingerprints resulted from a one pixel intertraverse distance and the traverse illustrations from a 20 pixel distance. These examples do not show any crossings or misplaced traverses. The fingerprints show some major inhomogeneities resulting from the staining. This shows that a transformation of the image by the GLI method (Schleicher and Zilles, 1990) is necessary in order to obtain a homogeneous image.

Depending on the kind of transition regions that should be detected, an intertraverse distance between four and eight seems to give sufficient accuracy. If changes of the lamination patterns are located over a longer stretch of the cortex (area 4 to 6), an intertraverse distance of eight seems to be adequate, and if the transition region is small, like the one from area 17 to 18, an intertraverse distance of four can be selected.

Finally, the electrodynamic techniques, the equal angle procedure and the length minimization method of Schleicher et al. (2000) were tested on a segment of strongly folded cortex (Fig. 1). 17 consecutive sections were used in order to test the results of the techniques for statistically significant differences (t test). (The same stretch of cortex was used in all of the sections.) An intertraverse distance of one pixel was used for all techniques. Additionally, the length minimization algorithm was applied for an intertraverse distance of 0.75 in order to receive results comparable with the other techniques. This is necessary because this algorithm defines intertraverse distance as the distance between the traverse centers, whereas the other algorithms measure the distance on the outside contour. The results are summarized in Tables 2 and 3. The fingerprints and difference plots are presented in Fig. 9. The RP-S technique produces the smallest mean derivative of 40.4. Therefore, this technique was statistically compared with all other methods. RP-S produces significantly smaller difference derivatives in comparison to the equal angle and length minimization techniques (intertraverse distance 1.0). No significant difference was found between the length minimization algorithm using an intertraverse distance of 0.75 and the RP-S method. However, in every single section, RP-S produces smaller mean derivatives suggesting that an increase of the sample size would produce a significant difference.

DISCUSSION

Despite the fact that many analyses of the lamina of the cerebral cortex have been performed by scanning the lamina using traverses and calculating profiles (Adhami, 1973; Amunts et al., 1995–2000; Geyer et al., 1996–2000; Hudspeth et al., 1976; Sauer, 1983; Schleicher and Zilles, 1983; Schleicher et al., 1978–2000; Semendeferi et al., 1998; Wree et al., 1981–1983), there exists no precise algorithmical descrip-
FIG. 7. Two further sections of the second human brain are used to test the algorithms in order to show the reliability of traverse generation in richly curved parts of the cerebral cortex. The sections, which are 20 μm thick and stained according to Merker (1983), were produced from blocks located around the central sulcus. (a) and (b) are taken from a block which was sectioned at the convexity of the brain. (a) Shows the result of the MP-C technique and (b) that of the MP-S method. (c) and (d) are from a block taken just above area 43. Therefore, the insular region has been partially cut off at the bottom of the images. The MP-S method was applied to the image of the convexity section at an intertraverse distance of one pixel. (c) Shows the result of the MP-C technique and (d) that of the MP-S method. The fingerprints for the two sections (generated using MP-S) are shown in (e) and (f). The inhomogeneous staining of the Merker methods is also visible in the fingerprints. ps, precentral sulcus; cs, central sulcus.
tion. Because the traverse scanning technique is used as a first step for delineating the complex pattern of cortical areas and further analyses like determination of areal variability, sex differences, intra- and interindividual variations (Amunts et al., 1995–2000; Geyer et al., 1996–2000; Schleicher et al., 1987, 1999, 2000; Schleicher and Zilles, 1990; Semendeferi et al., 1998; Wree et al., 1981–1983), it is important to use transparent computational techniques. Distortions of profiles resulting from traverse generation by the centerline or equal angle algorithms may influence further statistical analysis and automatic detection of transition regions between different cortical fields. Furthermore, the laminar pattern is distorted (Fig. 6) and does not run perfectly parallel to the cortical surface. This can be explained, at least in part, by the effect of cortical folding on the laminar pattern. An additional source of variability, however, is introduced by the variation in depth of lamina 1. The reconstruction of a part of the laminar pattern and, hence, the calculation

FIG. 8. The two diagrams plot the traverse difference derivatives from Table 1 averaged over two groups of inter traverse distances: the first group (1–128) contains all the inter traverse distances, the second (1–8) contains inter traverse distances 1 to 8. (The S algorithm aborted with inter traverse distance 128, so it was not included in the 1–128 group. This favors the S algorithm in this group, since the other algorithms are penalized by large values for inter traverse distance 128. To indicate this, the data points for the S algorithm are drawn as hollow circles.) The top diagram shows averaged mean derivatives, the bottom diagram shows averaged maximum derivatives. In this diagram, the curves cross at CL because its differences become lower with an increase of the inter traverse distances. The inter traverse distances of the second group can be recommended for profile generation because they present the smallest differences, and the values of the electrodynamics methods lie close together. According to Table 1, applying the MP-S technique with an inter traverse distance of 4 pixels seems to be a compromise with respect to inter traverse grey value differences and computational requirements.
of traverses, would be improved by defining the outer border at the lamina 1/lamina 2 transition. However, information will be lost since lamina 1 could be important because changes of the density of nerve fibers are an indirect indication for structural differences between adjacent areas, even though axon collaterals do not show up in the stainings used here.

Algorithms that generate traverses have previously been described in the literature. Schleicher et al. (1998, 1999) give a description of a centerline based algorithm, but the description there is quite vague, basically mentioning only the fact that a centerline is used. One may suspect that this approach uses additional heuristics to detect cases where misplaced traverses have been generated, since the centerline algorithm is prone to such errors, as demonstrated here. However, no mention of any corrective heuristics is made by the authors. Special corrections to optimize misplaced traverses generated by the centerline algorithm are possible. For example, if traverses do cross they can be rotated until they do not cross anymore. Furthermore, the inner and outer border can be shortened after a new traverse has been generated so that new traverses are calculated for the rest of the border. This reduction can be applied to a kind of frame of the inner and outer border, too (Schmitt et al., 1998). The CL and EA techniques tested here are not implemented to use corrections because they are not described in Schleicher et al. (1998, 1999) in a comprehensible way.

A more recent publication (Schleicher et al., 2000) describes a different algorithm based on minimizing traverse length combined with additional heuristics designed to optimize traverse placement. As demonstrated, this algorithm produces traverses of good quality. However, the description of the algorithm as published is quite sketchy; implementing the algorithm required a significant amount of experimentation to discover details that were not immediately obvious but turned out to be vital to make the algorithm work correctly. Also, the fact that the algorithm needs heuristics to ensure adequate traverse placement may mean that unsatisfactory results could be generated in situations for which the algorithm has not been tested and for which no corrective procedures have been developed. In fact, while processing the series of 17 sections, we discovered that the algorithm would abort if it ran into a strong bend in the contour that had been input using only a few contour points. To make the algorithm run correctly, the bend had to be smoothed by inserting more contour points. The other algorithms did not exhibit this problem.

The electrodynamics algorithm produces satisfactory results even for difficult cortex geometries (Griffin, 1994) without requiring the use of corrective heuristics. It can therefore be expected to perform robustly even in situations for which it has not been tested. Quantitative data have been presented that demon-

Table 2

Maximum Derivatives of Sections 116 to 132

<table>
<thead>
<tr>
<th>S-no</th>
<th>RP-S</th>
<th>RP-C</th>
<th>MP-S</th>
<th>MP-C</th>
<th>EA</th>
<th>S1</th>
<th>S075</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>1464</td>
<td>1610</td>
<td>1326</td>
<td>1530</td>
<td>3679</td>
<td>425</td>
<td>254</td>
</tr>
<tr>
<td>117</td>
<td>1435</td>
<td>1304</td>
<td>678</td>
<td>600</td>
<td>4482</td>
<td>425</td>
<td>280</td>
</tr>
<tr>
<td>118</td>
<td>1098</td>
<td>1211</td>
<td>1374</td>
<td>1605</td>
<td>3092</td>
<td>441</td>
<td>342</td>
</tr>
<tr>
<td>119</td>
<td>1883</td>
<td>2089</td>
<td>357</td>
<td>328</td>
<td>3127</td>
<td>548</td>
<td>430</td>
</tr>
<tr>
<td>120</td>
<td>926</td>
<td>678</td>
<td>440</td>
<td>1255</td>
<td>3119</td>
<td>525</td>
<td>394</td>
</tr>
<tr>
<td>121</td>
<td>281</td>
<td>263</td>
<td>1866</td>
<td>1565</td>
<td>3509</td>
<td>380</td>
<td>304</td>
</tr>
<tr>
<td>122</td>
<td>2219</td>
<td>1802</td>
<td>416</td>
<td>416</td>
<td>5101</td>
<td>1163</td>
<td>1304</td>
</tr>
<tr>
<td>123</td>
<td>599</td>
<td>769</td>
<td>2164</td>
<td>2337</td>
<td>3673</td>
<td>1043</td>
<td>1150</td>
</tr>
<tr>
<td>124</td>
<td>1727</td>
<td>1800</td>
<td>915</td>
<td>1395</td>
<td>3920</td>
<td>1460</td>
<td>685</td>
</tr>
<tr>
<td>125</td>
<td>2875</td>
<td>4034</td>
<td>3737</td>
<td>4046</td>
<td>4840</td>
<td>1027</td>
<td>4936</td>
</tr>
<tr>
<td>126</td>
<td>1771</td>
<td>1675</td>
<td>953</td>
<td>799</td>
<td>5064</td>
<td>1933</td>
<td>770</td>
</tr>
<tr>
<td>127</td>
<td>1539</td>
<td>1871</td>
<td>2173</td>
<td>2325</td>
<td>4253</td>
<td>18370</td>
<td>381</td>
</tr>
<tr>
<td>128</td>
<td>1863</td>
<td>2403</td>
<td>2623</td>
<td>3242</td>
<td>4211</td>
<td>1036</td>
<td>1413</td>
</tr>
<tr>
<td>129</td>
<td>240</td>
<td>542</td>
<td>1086</td>
<td>1177</td>
<td>1589</td>
<td>24910</td>
<td>128</td>
</tr>
<tr>
<td>130</td>
<td>2601</td>
<td>2781</td>
<td>2379</td>
<td>2924</td>
<td>5819</td>
<td>615</td>
<td>448</td>
</tr>
<tr>
<td>131</td>
<td>2757</td>
<td>2956</td>
<td>2784</td>
<td>3012</td>
<td>4417</td>
<td>1967</td>
<td>5083</td>
</tr>
<tr>
<td>132</td>
<td>2345</td>
<td>2570</td>
<td>2390</td>
<td>2348</td>
<td>6537</td>
<td>935</td>
<td>678</td>
</tr>
</tbody>
</table>

Note. S1, the algorithm of Schleicher et al. (2000) with an inter-traverse distance at the centerline of one pixel. S075, the same algorithm as used by S1 but with an inter-traverse distance at the centerline of 0.75 pixels. S-no., number of the histologic section. MV, mean value. STD, standard deviation.

Table 3

Mean Derivatives of Sections 116 to 132

<table>
<thead>
<tr>
<th>S-no</th>
<th>RP-S</th>
<th>RP-C</th>
<th>MP-S</th>
<th>MP-C</th>
<th>EA</th>
<th>S1</th>
<th>S075</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>34</td>
<td>34</td>
<td>37</td>
<td>35</td>
<td>65</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td>117</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>39</td>
<td>70</td>
<td>63</td>
<td>42</td>
</tr>
<tr>
<td>118</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>25</td>
<td>49</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>119</td>
<td>35</td>
<td>36</td>
<td>38</td>
<td>35</td>
<td>70</td>
<td>61</td>
<td>40</td>
</tr>
<tr>
<td>120</td>
<td>43</td>
<td>45</td>
<td>46</td>
<td>44</td>
<td>77</td>
<td>75</td>
<td>49</td>
</tr>
<tr>
<td>121</td>
<td>32</td>
<td>32</td>
<td>35</td>
<td>33</td>
<td>61</td>
<td>56</td>
<td>36</td>
</tr>
<tr>
<td>122</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>36</td>
<td>73</td>
<td>63</td>
<td>41</td>
</tr>
<tr>
<td>123</td>
<td>46</td>
<td>46</td>
<td>51</td>
<td>48</td>
<td>78</td>
<td>79</td>
<td>52</td>
</tr>
<tr>
<td>124</td>
<td>49</td>
<td>50</td>
<td>52</td>
<td>49</td>
<td>87</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td>125</td>
<td>74</td>
<td>76</td>
<td>80</td>
<td>75</td>
<td>117</td>
<td>126</td>
<td>84</td>
</tr>
<tr>
<td>126</td>
<td>43</td>
<td>43</td>
<td>45</td>
<td>44</td>
<td>73</td>
<td>75</td>
<td>49</td>
</tr>
<tr>
<td>127</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>57</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>128</td>
<td>54</td>
<td>57</td>
<td>57</td>
<td>56</td>
<td>90</td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>129</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>34</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>130</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>46</td>
<td>81</td>
<td>78</td>
<td>49</td>
</tr>
<tr>
<td>131</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>35</td>
<td>67</td>
<td>60</td>
<td>39</td>
</tr>
<tr>
<td>132</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>47</td>
<td>68</td>
<td>80</td>
<td>51</td>
</tr>
</tbody>
</table>

Note. The confidence level (t test) is shown in the last row. The results of all algorithms were compared with the RP-S result. The EA and the S1 results are significantly different (significance level 0.05) in comparison to the RP-S technique. S-no., number of the histologic section. MV, mean value. STD, standard deviation.
strate the superiority of this approach over the other approaches that were studied where the continuity of the generated gray level profiles is concerned.

The electrodynamics algorithm has no influence on the effect of extremely tangentially sectioned cups of gyri or sulci. If the generator passes such an extreme region, certain laminae are represented too strongly or too weakly compared to a perpendicularly sectioned part of the same region. Maybe this problem of non-linear distortions resulting from non-orthogonal sectioning of the cerebral cortex can be corrected by a non-linear normalization of the profiles. A prerequisite for such a tangential correction would be a reliable detection of laminar borders within a profile followed by the identification of discontinuities or even jumps in the laminar heights between neighboring profiles. The electrodynamic approach that was tested on 2-D surface data here can easily be adapted to 3-D volume data. This seems to be an obvious advantage in comparison to the techniques based on geometric algorithms. If we are able to register such high-resolution images of serial histologic sections of up to 10^9 pixels, which is close to the resolution of single cells, then we can easily adapt and apply the electrodynamic algorithm for orthogonal scanning of the cerebral cortex in the resulting 3-D volume data. Naturally, under such circumstances the tangential section problem would not occur any more.

In Figs. 4, 7a, and 7b two different parts of the cerebral cortex were analyzed. The fact that Fig. 4 shows a galloccyanin chromalum stained section and Figs. 7a–7d a Merker stained one of different individuals is not relevant here, since we aimed to document only that the MP-S and MP-C methods work properly on richly curved cortical contours. Because it has already been shown in the example of a more smooth cortical surface in Fig. 4 that the CL and EA algorithms produce strong intersections of traverses we forego testing the results on a much more curved part of the cortical surface (Figs. 7c–7d).

A further idea for quantifying the lamination pattern of the cerebral cortex is the tessellation of the area in between the outer and inner border. Orthogonal stacks of tessellated polygons may present an alternative method for quantifying the cortical lamination (Duyskaerts et al., 1994; Grignon et al., 1998). Bok (1959) has already described a tessellation of the area between the outer and inner border of the cerebral cortex by a regular chessboard pattern.

Another possibility for lamination analysis could be the application of elasticity theory (Budo, 1990; Landau and Lifshitz, 1959; Sokolnikoff, 1956). Convexities and concavities can be considered as force vectors that have to be minimized in order to unfold the 2-D projection of the cortical area.

Different authors (Carman et al., 1995; Fischl et al., 1999; Xu et al., 1999) have already applied surface

FIG. 9. The same cortex segment in histologic sections 116 to 132 was used for generating traverses. The intertraverse distance of the electrodynamic methods (rp_s, rp_c, mp_s, mp_c) and of the equal angle method was 1.0 pixel. The length minimization algorithm (s) used an intertraverse distance of 0.75 pixels. The accompanying difference derivatives are listed in Tables 2 and 3.
modeling methods (outline-based (Levinthal and Ware, 1972; Christian and Sederberg, 1978) and/or volumetric-based (Lorenson and Cline, 1987)) followed by the analysis of flat maps (Griffen, 1994; Haidekker et al., 1998; Jouandet et al., 1989; Schwartz and Merker, 1986; Van Essen and Maunsell, 1980) of the surface of the human brain. It would be a great advantage to use these nonlinear transformation techniques to produce flat cytoarchitectonic maps of the human cerebral cortex, which would offer new perspectives in statistical evaluation and comparative inter- and intraindividual studies.

In this study, columnar patterning (Mountcastle, 1997), for example that of the primary motor cortex, is not considered. A possibility for quantifying the columnar patterning could be the construction of testlines between traverses (parallel to the inner and outer border) generated by the modified electrodynamic model with straight traverses.

After calculating the profiles they can be normalized to a certain length. So far this is done by linear interpolation. We can suppose that local morphologic features like convexity and concavity measures may be used in order to obtain a better normalization of the cortical region of interest. This would be very helpful at those regions of a section that have been cut in a more or less tangential manner.

In summary, the electrodynamic algorithms generate robust profile families even within extreme courses of the inner and outer surface of the cerebral cortex.

REFERENCES

