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Abstract

The aim of the human neuroscanning project (HNSP) is to build an atlas of a human brain at cellular level. The database
was obtained by a variety of image modalities and in particular histological sections of a prepared brain. As the preparation
leads to linear and non-linear deformations of the tissue, reconstructing the essential information out of deformed images
is a key problem within the HNSP. Our approach of correcting these deformations is based on an elastic matching of the
images. Therefore, a parallel implementation was used, since the problem in general is computational expensive and for very
large scale digital images a huge amount of data has to be processed. As these requirements are in the range of today’s grand
challenges, a large PC-Cluster was used to provide the performance demands. The measurements and results presented here
were obtained on a cluster of 48 Dual SMP platforms connected via a Myrinet network. © 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The reconstruction of deformed biological objects
is a basic problem within biomedical image process-
ing and registration. Especially, if images arise from
a series of sections through a part of the human body,
e.g. computer tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET).
In this paper we concentrate on particular problems of
the human neuroscanning project (HNSP) at the Med-
ical University of Liibeck. The aim of the HNSP is to
produce a three-dimensional map of the human brain
based on different modalities, in particular cellular
information. Here, the information is derived mainly
from histological sections.

* Expanded version of a former work presented at the HPCN’99.
* Corresponding author.

The material has to be processed by different kinds
of technical procedures before certain observations of
biological specimens can be performed and conse-
quently information can be analyzed. Current tech-
niques always change the intrinsic geometry of the
biological material. In the case of a whole human
brain, which has to be sectioned into thousands of thin
slices, laboratory processing leads to non-linear de-
formations. Although these deformations are small in
general, they might become crucial for the reconstruc-
tion of cellular information. In order to obtain reliable
spatial information these deformations have to be cor-
rected.

Correcting images of spatially distorted objects is
known as image registration. Two different approaches
are common. One approach is based on the idea of
representing the unknown distortion in terms of the
coefficients of a fixed basis, such as piecewise linear
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functions or higher order splines. Typically, these co-
efficients are determined by a least squares condition
for some user prescribed landmarks (see, e.g. [4]).
This approach is known as warping [17]. The second
approach is based on the formulation of the problem
via a non-linear partial differential equation (PDE).
To solve these equations no further information on
the underlying images, e.g. landmarks, is needed (see,
e.g. [1,16]). We describe a method for correcting these
kind of deformations based on a linear elasticity model
and leading to a non-linear PDE. This so-called elas-
tic matching method is also used in other projects, e.g.
[1,2,5,6,15].

To resolve details of the brain (e.g. neurons) very
high resolution scans of histological sections are pro-
duced. In comparison to MRI where the resolution
is 640 x 10° wm3/voxel, pictures of the HNSP of-
fer a much higher resolution with 0.026 wm?/voxel.
Matching thousands of such images in a reasonable
amount of time requires computing performance
that is beyond today’s single processor systems. In

addition, memory requirements for the large im-
ages lead to a parallel implementation of the elastic
matching algorithm. Here, with respect to an attrac-
tive price/performance ratio, we use a PC-Cluster to
provide the performance demands.

In this paper we describe the parallel implementa-
tion of our elastic matching algorithm and present per-
formance measurements on a 48 node cluster system.
Details of the HNSP are described in Section 2. After
the background of the elasticity model given in Sec-
tion 3, Section 4 presents internals of our parallel al-
gorithm and performance measurements. The results
and their discussion are given in Section 5.

2. The HNSP

The aim of the HNSP is the three-dimensional re-
construction of all cells of a human brain and their
structural and functional characterization by means of
molecular-biological techniques. The processed tissue

(a)

(b)

Fig. 1. Peripherical equipment for gaining human brain images: (a) the very large microscope (VLM) is analyzing the histological sections
of the brain at the cellular level; (b) the episcopic imaging device consists of a digital camera which produces images of the upper surface

of the paraffin block before each sectioning process.
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a) Brain after fixation in formalin

b) Paraffin embedded brain

Fig. 2. The black line on the formaldehyde fixated brain (a) indicates the intersection area of the paraffin embedded brain (b) and the

location of the matched sections 116-119.

is quantified by different digitization devices like high
resolution transparent flat bed scanners, light micro-
scopes (Fig. 1a) and episcopic imaging (Fig. 1b).

The data resulting from the cellular analysis should
be used as the functional entity model (FEM) for the
integration of the other modalities. Because data from
the functional modalities have to be analyzed in dif-
ferent statistically independent specimens, stochastic
maps of their spatial distributions have to be computed
and related to the FEM. The resulting multi-modal
structure function model (SFM) is of great importance
for simulation studies in computational neuroanatomy
because each cell in such a virtual brain is character-
ized by an extensive feature vector extracted from the
real histological object.

In this project a 65-year-old male human post-
mortem brain (Fig. 2a) of a voluntary donator was
fixed in a neutral buffered formaldehyde solution for
4 months. An MRI-scan of this brain was produced
after fixation. Dehydration and embedding of the
brain in paraffin wax (Fig. 2b) lasted three further
months [14] followed by sectioning the brain into
6214 slices with a thickness of 20 wm. Before each
sectioning process a high resolution episcopic image
(1352 x 1795 pixels, 24 bit, 7 x 100 bytes) of the
section plane was scanned.

After sectioning, the tissue slices were stretched in
warm water at 55°C in order to get flat tissue sec-
tions. However, these methodological steps produce

non-linear deformations of each section. The sec-
tions were stained in gallocyanine chrome alum
and mounted under cover-glass for bright field light
microscopy [14]. As larger sections cannot be in-
vestigated under conventional microscopes a special
microscope was used. This very large and high preci-
sion microscope (VLM, Fig. 1a) was equipped with
three motors and enables the exploration of the tissue
volume. The VLM is controlled by a single PC which
is equipped with a frame grabber in addition. This
system detects automatically 10-15 optical sections
with cellular objects within the section space.

At aresolution of 0.016 wm/pixel a huge amount of
data has to be processed. Therefore, a small five node
cluster consisting of 400 MHz PII platforms perform
the analysis (segmentation, object recognition, ob-
ject morphometry, object densitometry) of the image
stacks which are distributed by the VLM control PC.

The whole system (VLM+-controller+cluster) is an
integrated solution for a very large scale problem in
computational anatomy and it is called light micro-
scopical section analyzer (LMSA). With this system
different neuronal entities can be analyzed on differ-
ent scales, i.e. from macroscopic details down to the
cellular level.

The stained sections were digitized using a high res-
olution flat bed scanner. With a resolution of 800 ppcm
(or 2032 ppi) at an 8 bit grey scale mode, the size of the
largest image is 11 000 x 7000 pixels (about 196 MB)
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[13]. The uncompressed amount of flat bed scanned
data is approximately 700 GB + 40 GB episcopic data
for one human brain. If in addition each spatial stack
of images would also be stored at a magnification of
0.016 wm/pixel, an expected data mass of about 4 PB
has to be handled. A reduction of these data amount
can be obtained by storing only the object feature vec-
tors (8—12 features). This results in a reduction of the
amount of data to 2.5 TB.

The stack of scanned images is the basis for com-
puting the deformations introduced by the preparation
processes. In Section 3 a mathematical formulation of
the underlying problem is presented.

3. Modeling non-linear deformations of two
consecutive sections

The deformation of a tissue section introduced by
the preparation processes can be decomposed into
a linear part (including translation, rotation, scaling,
shearing) and a non-linear part. The linear part re-
sults, e.g. from fixation of the tissue section on the
microscopic slide. The non-linear part results from
elastic properties of the tissue and is thus called elas-
tic deformation. From Fig. 6¢c, where the difference
between the section 116 and the linearly corrected
section 117 is shown, it can be recognized that the
non-linear part might also be substantial.

To compute the elastic deformation a standard ap-
proach of linear elasticity theory was used [9]. We are
looking for an elastic deformation of a template im-
age (T) that simultaneously minimizes the difference
T(x —u,y—v)— R(x, y) between the deformed and
the reference image (R) and the deformation energy

E(u, v) =/ Iauy +vy)?
Q

+uu? + v§ + Sy +v0)P) d(x, y).

Here, the so-called deformation field (u,v) =
(u(x,y), v(x,y)) describes the elastic deformation
and u, A are the so-called Lamé-constants, see, e.g.
[9]. This approach enforces similarity of the images
as well as connectivity of the tissue. Note, in this
notation 7T (x — u,y — v) might be viewed as the
non-deformed version of the template.

Applying the calculus of Euler-Lagrange we find
that a minimizer is characterized by the two-dimen-
sional Navier-Lamé equations (1) (cf. e.g. [9])

f _ Uz + ”yy) + (A + w) (e + vxy)
< g ) T\ e+ vyy) + A+ ) (i + vyy)
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Note that (f, g)T, which might be viewed as a force
field, depends non-linearly on the deformation, cf.

Eq. (2)
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An appropriate discretization of these equations finally
leads to a fix-point type equation for the unknown
deformation field, cf. Eq. (3)

A(uk+l, vk+1)T — (f(uk, Uk), g(uk’ vk))T_ 3)

In principle, any method for solving a system of
linear equations can be used to compute the solu-
tion of Eq. (3). However, a discretization with m x
n points results in N = 2mn unknowns (e.g. for
512 x 512 discretization points we end up with N =
219 = 524 288) and A becomes N x N. For a stan-
dard LU-decomposition one needs to store O(N 2) real
numbers and approximately O(N3) floating point op-
erations [8]. Thus, memory and computational require-
ments make a parallel implementation of an iterative
solver for Eq. (3) unavoidable.

4. Parallel realization and measurements

4.1. Parallel implementation of the elastic
matching algorithm

The implementation of our parallel algorithm for p
processes can be divided into three parts (quantities
used only locally are denoted with a subscript “loc”).
The repetition of part two and three is called outer
loop (the superscript “k” serves as an outer iteration
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Table 1

Principle phases of the parallel implementation of the CG-algorithm

(a) Computation Matrix-vector multiplication Gloc = Ap
Inner product Aloc = qf,cpmc

(b) Communication Build and distribute global sum =) toc

(c) Computation Two SAXPY’s Xloc = Xloc + OPloc

Toc = Toc — A{qloc

Inner product Bloc = FF Tloc

(d) Communication Build and distribute global sum B =23 Bioc

(e) Computation Local vector operation Ploc = Toc + BPloc

(69 Communication Exchange local vectors Ploc <> right and left neighbor

counter). In our current implementation there is one
process per node.

1. Partition the images R and T into p stripes
and distribute these stripes to p processes. Each
process sets k = 0, (u{‘oc,vlkoc) = (0,0), and
(fioe '+ 8loe ) = (0, 0).

2. Each process applies the deformation (u{‘oc, v{f)c)
to Tioc, 1.e. it computes T (x — Ujoc, Y — Vloc) DY
using bilinear interpolation schemes. In addition,
the forces ( fll(‘)c, glkoc) (see Eq. (2)) were computed
independently. The difference between the new and
the old force field might be used as a stopping
criteria. Note that computing this difference implies
a global communication in each iteration step.

3. Solve the system of linear equations (3) for the new
deformation field (u*t1, v¥*1). Set k — k+1 and
continue with step 2.

As already pointed out, the main computational
work is needed for solving Eq. (3), which has to be
done in each step. Here, a parallel implementation
of the conjugate gradient method (CG) is used (cf.
e.g. [8]). This iterative scheme leads to an additional
so-called inner loop.

The basic structure of our implementation is given
in Table 1. The essential computational and communi-
cation costs needed in one step of the inner CG itera-
tion are next neighbor communication (exchange local
stripes with two neighbors), two global sums (inner
products ~ 4N FLOPS), three local SAXPY opera-
tions (Y = aX + Y, 6N/p FLOPS for vectors X, Y
of length N/p), and one matrix vector multiplication.
Exploiting the special structure of the matrix A, the
expense of this multiplication is O(N/p) FLOPS but
depends on the particular discretization of the defor-
mation field (u, v). Note, N is the total number of

unknowns (i.e. N = 2mn for m x n discretization
points), p is the number of processes.

To process on a pair of 1024 x 1024 pixel images,
a computation power of approximately 10 GFLOPS
is needed in one outer iteration step. The number of
outer iteration steps needed is in the order of 100,
but depends generally on the resolution of the images
and the magnitude of the deformation. Since our goal
is the matching of a whole brain consisting of about
6000 sections, a multicomputer is needed to provide
the enormous amount of computation power.

4.2. Hardware environment

Clusters built from commodity off-the-shelf PCs or
workstations are an attractive alternative to “real” par-
allel machines, due to their better price/performance
ratio. This is especially true, when the nodes are con-
nected via high speed networks which combine low
latencies with a high transfer bandwidth.

Our parallel implementation was performed on the
“Stortebeker Cluster” [10]. This cluster consists of 48
dual SMP platforms (333 MHz Pentium II) which are
interconnected via Myrinet [3]. Basic building blocks
of the network topology (Fig. 3) are four switch fab-
rics, forming a fully connected graph. One fabric hosts
eight interconnected 8-port switches arranged as a
bi-graph with two stages of four switches each.

4.3. Programming interface

While commodity off-the-shelf cluster nodes de-
liver increasing high computation power, achieving ad-
equate high speed communication is still a challenge.
At the network interface side, it was found earlier
that the “traditional” protocols and operating system
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16 hosts§ 516 hosts
16 3 [ 3
Expan- 3 3
sion 5 516 hosts
Ports 3

Fig. 3. Topology of the Stortebeker Cluster.

services are not able to make the very low latencies and
a high bandwidth of the network technologies avail-
able at the user level. Applications often can exploit
the performance of the underlying network only by
using tailor-made programming interfaces. With these
special interfaces and access methods, it is possible to
produce and consume communication traffic close to
the peak performance of system busses and network
links. For most technologies, this involves direct ac-
cess to the communication hardware. Unfortunately,
the efficiency of communication via direct hardware

40

access depends strongly on programming details of the
specific device technology. This dependency makes
porting the applications between different technolo-
gies difficult if not impossible.

In order to provide efficient direct access without
loosing portability of the applications, a lean message
passing programming interface has been developed at
the University of Liibeck [12]. This high performance
cluster communication (HPCC) environment acts as a
common abstraction layer for various high speed tech-
nologies. Its portability enables applications to access
different networks in a uniform and efficient manner.
Currently HPCC supports direct access for four high
speed networks [10]: Myrinet, Scalable Coherent In-
terface (SCI), Gigabit Ethernet, and Heterogeneous
Interconnect (HIC).

HPCC provides the functionality for communica-
tion (connection establishment, send, receive) and dy-
namic process creation, similar to PVM or MPL. In
order to exploit the performance of high speed de-
vices, a zero-copy, unbuffered send, and a correspond-
ing receive operation are offered besides the buffered,
blocking send and receive operations. For the mea-
surements shown in Fig. 4, the parallel program uses
HPCC as communication layer under LINUX.

—a— 256 x 256 pixel / image '
—o— 512 x 512 pixel / image
—e— 1024 x 1024 pixel / image

35
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Speedup

15

10 |

0 ) ) L L
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25 30 35 40 45 50
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Fig. 4. Speedup for matching two pairs of n x n pixel images, N = 256, 512, and 1024.



J. Modersitzki et al./Future Generation Computer Systems 18 (2001) 115-125 121

System
Load
7.012 7.072
Process 4
7.012 7.072
Process 8
7.012 7.072
Phase a b ¢ det a

7.132 7.182

7.182 7.182

7.132 7.192
b ¢ def a b c def

7.252 sec

7.252 sec

7.252sec

Fig. 5. System load and computation/communication phases of the arbitrarily chosen processes 4 and 8 for an eight node configuration.

4.4. Measurements

With respect to reasonable measuring times, the
number of steps in the outer loop as well as the maxi-
mum number of the CG steps in the inner loop were set
to 50. Measurement series with a variable number of
nodes (the current implementation only supports one
process per node) were performed. In order to inves-
tigate the implementation behavior at different image
sizes, the speedup for three pairs (256 x256, 512x512,
and 1024 x 1024 pixel images) were regarded.

The run time for matching a pair of n x n pixel
images with our sequential version is about 26 min
for n = 256 and about 2h for n = 512. For n =
1024 the time would be about 8 h. However, memory
requirements prohibit this execution. In order to get
the program speedup for these images irrespective of
the missing normalization factor, the run time on a
four node version provides the calculation base. As
the speedup measurement for n = 256 and 512 were
nearly the same on a four node system, we assume that
this would be more than ever the same for n = 1024.

Since the parallel version also has a sequential part
(i.e. starting the processes, initialization and distribu-
tion of the images, etc.) it is clear that the speedup
cannot be linear (optimal). As expected, the speedup
becomes better with increasing problem size (Fig. 4).
For matching a pair of 1024 x 1024 pixel images the
program speedup on 48 computation nodes is near 40
with a total run time of about 12 min.

To get insight into the program behavior, three iter-
ation steps of the CG-algorithm are shown in Fig. 5.
For observation and evaluation of the behavior the
performance monitoring tool DELTA-T [11] is used.
The system load and computation/communication
phases of two arbitrarily chosen processes are shown
for an eight node configuration (i.e. eight processes).
Fig. 5 shows about 0.25s of the execution time. In
particular, three principle phases of the CG-algorithm
as introduced in Table 1 are displayed. The upper
curve in Fig. 5 shows the system load. Here, 100%
indicates that all eight processors are working con-
currently. An average utilization of nearly 100%
is reached, i.e. the parallel implementation of the
CG-algorithm is able to use almost the full system
power. The two Gantt graphs of processes 4 and 8
show computation phases (black) and communication
phases (white). Typically, more than 50% of the ex-
ecution time of one CG step is taken by phase (a).
Building the global sums (phases (b) and (d)) takes
more time than exchanging the local vectors in phase
(f), although much more data have to be transferred in
phase (f).

If more computation nodes are used, the compu-
tation time of phases (a), (c), and (e) is reduced. In
contrast, the time for the communication phases (b)
and (d) is increased. For larger numbers of nodes
this leads to a lower efficiency and might become
crucial while matching two images of relatively small
sizes. However, the images to be matched in the
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a) R, section 116

b) T, linearly corrected section 117

¢) ||IT - R| ~ 10361

Fig. 6. (a) Reference image R (section 116) and (b) template image 7 (linearly corrected section 117), both 512 x 512 pixels, 256 gray
levels. Note that differences can hardly be seen by human eyes. Difference (c) before (|7 — R|| ~ 10361) and (d) after (|| 7200 — R|| =~ 3123)
performing the elastic matching algorithm. The difference reduction ratio is || 7200 — R||/IIT — R|| ~ 30.1%.

HNSP project have a high resolution and thus large
sizes.

5. Results

In Fig. 6 the results of matching a pair of 512 x 512
pixel images are shown. Here, the arbitrarily cho-
sen sections 116 (Fig. 6a) and 117 (Fig. 6b) out
of a total of 6214 sections were matched. The sec-
tions are obtained from the occipital lobe (visual

system). Due to a better presentation and in cor-
respondence to our measurements, these images
were scaled down from 6500 x 2300 to 512 x 512
pixels.

Comparing the (linearly corrected) template 117
with the reference image 116 shows a difference of
IT — R|| ~ 10361 in the Frobenius norm (Fig. 6c).
Using our elastic matching algorithm, we are able to
reduce the difference to || 7290 — R|| ~ 3123 (Fig. 6d),
which is ca. 30.1% of the initial difference. Here, we
performed 200 outer iteration steps.
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Z Axis
119

118

a) 3D alignment of 4 sections

b) rendering of 4 sections

Fig. 7. Results after elastic matching of sections 116-119: (a) three-dimensional region of interest of the object data (three-dimensional
alignment of four sections); (b) three-dimensional visualization of the alignment of scanned and down-scaled 1024 x 1024 pixel images

(scaled z-axis, rendering of four sections).

The elastic matching algorithm enables a spatial
alignment of several consecutive sections. This is ap-
parent from Fig. 7b, where four consecutive sections
of 1024 x 1024 pixel images were matched. Note, for
presentation purpose the z-axis has been scaled differ-
ently. For this example, the registration is perfect up
to pixel size.

Interpolation schemes are used in order to obtain
spatially corrected object data (Fig. 7a). From this, we
obtain a sufficient reconstruction of the spatial geom-
etry of a whole brain on a cellular level.

From the morphological point of view this can be
considered as an adequate result. Irrespectively to the
fact that there exists no other method for solving this
kind of deformation problem, this technique can be
considered as a sophisticated procedure to match im-
ages of tissue sections of the whole human brain.

6. Conclusion

The presented elastic matching method allows
reconstruction of deformed images. Because of its
universality, the technique is also useful to align
images from other modalities like PET, MRI, elec-
troencephalography (EEG). Moreover, this method

can be adapted easily to a variety of more general
image registration problems.

A parallel implementation makes the approach prac-
ticable and attractive for medical image processing
applications, especially for those emerging from the
HNSP. Our implementation demonstrates that the elas-
tic matching algorithm produces promising results in
a reasonable amount of time on a high performance
cluster system. In addition, the implementation allows
matching of images obtained from high resolution sec-
tion scans. Artifacts arising from down-scaling and
interpolation schemes can be reduced by using large
sized images.

From the medical point of view, further work has
to be performed by investigating and interpreting the
results. Till now we do not know what is actually the
best match in medical sense, what is under-matched
and which result is over-matched (corrected template
and reference are identical). From the mathematical
point of view a convergence proof of the overall algo-
rithm is under work.

However, the method is a promising tool for the
reconstruction process within the HNSP. In the future
we will also parallelize the method using a multi-grid
solver and in particular a direct solver based on fast
Fourier-type techniques (FFT) [7]. Therefore, different
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modules for solving the system of linear equations
with appropriate parallelization strategies have to be
supplied.

The presented results are based on the interaction
of computer science and medicine. Sophisticated tech-
niques are needed to produce high quality images.
However, spatially non-deformed images seem to be
out of reach at least in the near future. Thus, within
the deformation process, specialized algorithms and
its parallel realizations are needed to obtain reliable
object data.
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