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Abstract. The aim of the human neuroscanning project is to build an
atlas of the human brain, based on a variety of image modalities in par-
ticular histological sections of a prepared brain. Reconstructing essential
information out of deformed images is a key problem. We describe a
method to correct elastic deformations. Since the method is computa-
tional expensive a parallel implementation is presented. The measure-
ments and results shown are performed on a cluster of 48 Pentium II
PCs connected via Myrinet.

1 Introduction

Reconstruction of deformed images is a basic problem within medical image
processing (image registration). Especially, if images arise from a series of sec-
tions through a part of the human body, e.g. CT (computer tomography), MRI
(magnetic resonance imaging), PET (positron emission tomography).

In this paper we concentrate on particular problems of the human neuroscan-
ning project (HNSP) at the Medical University of Liibeck. The aim of the HNSP
is to produce a three-dimensional map of a human brain based on different
modalities, in particular cellular information. Here, the information is derived
mainly from histological sections.

Typically, sectioning processes lead to deformed sections and consequently to
deformed images. Although these deformations are small in general, they might
become crucial for the reconstruction of cellular information in the human brain.

Two different approaches for correcting this kind of distortions are com-
mon. One approach is based on the idea of representing the unknown correction
in terms of the coefficients of a fixed basis, such as piecewise linear functions
or higher order splines. Typically these coefficients are determined by a least
squares condition for some user prescribed landmarks (see, e.g., [3,4]). The sec-
ond approach is based on the formulation of the problem via a non-linear partial
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differential equation (PDE). To solve these equations no further information on
the underlying images, e.g. landmarks, is needed (see, e.g. [1,17]).

We describe a method for correcting these kind of deformations based on a
linear elasticity model leading to a non-linear PDE. This method is also used in
other projects, e.g. [1], [2], [6], [7], [16].

To resolve details of the brain (e.g. neurons) very high resolution scans of the
histological sections are needed. This leads to high dimensional problems. Due to
memory and computational requirements of the method used a straightforward
implementation can not be applied. Hence, we present a fast algorithm and its
parallel implementation.

The HNSP project is described in the next section. The elasticity model is
given in section 3, whereas section 4 presents our parallel implementation and
performance measurements. The results and their medical discussion are given
in section 5.

2 The Human Neuroscanning Project (HNSP)

The aim of the HNSP is the three-dimensional reconstruction of all cells of a
human brain. These data should be used as the basic structure for the integration
of functional data based on stochastic mapping and later on for modeling and
simulation studies in such a virtual brain.

In this project a 55 year old male human post mortem brain of a voluntary
donator of his corpse was fixed in a neutral buffered formaldehyde solution for 3
months. A MRI-scan of this brain was produced after fixation. Dehydration and
embedding of the brain in paraffin required 3 further months. This preparatory
work was followed by sectioning the brain in 20 pm thick slices (about 7000 for
this brain) by using a sliding microtome. Before each sectioning process a high
resolution episcopic image (1352 x 1795 pixels, 24 Bit, 7-10° Bytes) of the section
plane was scanned.

After sectioning, the tissue slice was stretched in warm water at 55°C. There-
after, it was transferred onto a microscopic slide and dried over night. The sec-
tioning, stretching and drying processes are necessary in order to get flat tissue
sections. However, this methodological steps produce non-linear deformations
of each section (see Fig. 3). After drying, the sections were stained in gallo-
cyanin chrome alum and mounted under cover-glasses in order to visualize all
cells (special light microscope for analyzing large sections (LMAS)) in whole
brain sections. Different neuronal entities were analyzed on different structural
scales i.e. from macroscopic details down to the cellular level. In order to ob-
tain a non-deformed stack of images a so-called elastic matching method was
used. Elastic matching can be used also for multimodal matching of histological
sections with non-deformed MRI-scans [14] or episcopic images. The later ones
might be derived from image processing before sectioning the embedded brain.
The stained sections were scanned by a transparent flat bed scanner using a res-
olution of 800 ppcm (or 2032 ppi) in a 8 Bit gray scale mode (size of the smallest
image was 5000 x 2000 pixels, size of the largest image was 11000 x 7000 pixels
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(about 196 MBytes). The uncompressed amount of flat bed scanned data was
approximately 700 GBytes + 40 GBytes episcopic data for one human brain.

In the following, the arbitrarily chosen sections 116 and 117 out of a total of
about 7000 sections were matched. In the upper left corner of Fig. 3 the reference
image (116) is shown and in the upper right corner the template image (117). In
these images the left and the right hemisphere of the human brain are shown.
These sections were obtained from the occipital lobe.

In this stage of the HNSP the images were scaled down from 6500 x 2300 to
512 x 512 pixels in order to keep the computation times reasonable. A straight-
forward rescaling based on bilinear interpolation was used.

3 Modeling non-linear deformations of two consecutive
sections

We are looking for an elastic deformation.of the template image (T') that si-
multaneously minimizes the difference between the deformed and the reference
image (R) and the deformation energy

E(u,v) = /ﬂ %{uz +v,)° + u(ui + vl + %(uy + uz)z) d(z,y),
where the so-called deformation field (u,v) = (u(z,y),v(z,y)) describes the
local deformation and p, ) are the so-called Lamé-constants, see, e.g., [10]. This
approach enforces similarity of the images as well as connectivity of the tissue.

Applying The calculus of Euler-Lagrange we find that a minimizer is charac-
terized by the so-called two-dimensional Navier-Lamé-equations (1), cf. e.g. [10],

(f) - (.u(uzm T, u!.'y.], + (A +ﬂ')(u‘mz + ’Uzy)) AT (u) : (1)
g Buzs +vyy) 4+ (A + p)(ugy + vyy) v

Note, (f,g)" (which might be viewed as a force field) depends non-linearly on
the deformation, cf. eq. (2),

(_f) i T(z —u,y —v) — R(z,y) Tz — u,y —v) @)
g T(x—u,y-—v]—R(z,y] -Ty(m*u,y—v)
An appropriate discretization of these equations finally leads to a fix-point type
equation for the unknown deformation field, cf. eq (3),

A0 )T = (fb,ob), g(ut, o) 3)

In principle, any solver can be used to compute the solution of eq. (3). How-
ever, a discretization with m x n points results in N = 2mn unknowns (e.g.
for 512 x 512 discretization points we end up with N = 219 = 524288) and A
becomes N x N, For a standard LU-decomposition one needs to store O(N?)
real numbers and approximately O(N?3) floating point operations. Thus, memory .
and computational requirements make a parallel implementation of an iterative
solver for eq. (3) unavoidable.



4 Parallel realization and measurements

Due to a good price/performance ratio workstation clusters become an alterna-
tive to expensive dedicated parallel computers. Hence, our parallel implemen-
tation is performed on the so-called “Stortebeker Cluster” [13]. This cluster
consists of 48 dual 333 MHz Pentium II nodes interconnected via Myrinet [5].
The operation system used is LINUX. For the measurements shown in Fig. 1,
the parallel program uses PVM [12] as the underlying message passing system.
PVM is used in order to support also different and heterogeneous platforms.

4.1 Parallel implementation of the elastic matching algorithm

An implementation of the parallel algorithm for p processes can be divided into
three parts (quantities used only locally are denoted with a subscript joc). The
repetition of part two and three is called outer loop. In the current implementa-
tion there is one process per node.

1. Partition the images R and T and the initial deformation field (u?,v?) into
p stripes and distribute these stripes to p processes. Every process sets
(froes 9ige) = (0,0) and k = 0. .

2. Every process applies the deformation (ui‘fn,vi"oc) to Tioc and computes the
forces (fit_, gt .)independently.

If the difference between the new and the old force field is sufficiently small,
terminate.

3. Solve the linear system of equations (3) for the new deformation (u¥+1, v*+1).
Set k — k + 1 and continue with step 2.

As already pointed out, the main computational work is needed for solving
eq. (3), which has to be done in any step. Here, a parallel implementation of the
conjugate gradient method (CG) is used, cf. e.g. [9]. Performing this iterative
scheme requires an additional so-called inner loop.

The basic structure of our implementation is given in Table 1. The essen-
tial computational and communication costs needed in one step of the inner
CG iteration are next neighbor communication (exchange local stripes with two
neighbors), two global sums (inner products ~ 4N FLOPS), three local SAXPY
operations (Scalar Alpha times X Plus Y, 6/N/p FLOPS for vectors A Y of
length N/p), and one matrix vector multiplication (exploiting the special struc-
ture of the matrix A, this multiplication is @O(N/p) FLOPS but depends on
the particular discretization). Note, NV is the total number of unknowns (i.e.
N = 2mn for m x n discretization points), p is the number of processes.

4.2 Measurements

In order to keep the measurement times reasonable, the number of steps in
the outer loop as well as the maximum number of the CG steps in the inner
loop is set to 50. Two measurement series with different numbers of nodes (the
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Table 1. Principle phases of the parallel implementation of the CG-algorithm.

(a) | computation | matrix-vector multiplication loe = Ap

inner product Qloe = qf;cpmc

(b) | communication | build and distribute global sum |a = 3" a10c

(c) | computation | two SAXPY’s Tloc = Tloc + APloc
Tloc = Tloc — XGloc

inner product Bios = TpeTioe

(d) | communication | build and distribute global sum | 8 = T fBioc

(e) | computation |local vector operation Ploc = Tloc + BDloc
(f) | communication | exchange local vectors Ploc +* right and left
neighbor

current implementation only supports one process per node) were performed,
one matching of two 256 x 256 pixels images and a second one matching of two
512 x 512 pixels images. '

The run time of the sequential version for the 256 x 256 pixels images is
about 26 minutes, while the calculation of the 512 x 512 pixels images lasts
about 100 minutes. Since the parallel version has a sequential part (i.e. starting
the processes, initialization and distribution of the images etc.) it is clear that
the speedup can not be linear (optimal). As expected, the speedup becomes
better with larger problem sizes. The total run time is still very high, about 188
seconds on a 48 node cluster for the 512 x 512 pixels images.

To give inside into the program behavior three iteration steps of the CG-
algorithm are shown in Figure 2. For observation and evaluation of the behav-
ior the performance monitoring tool DELTA-T [11] is used. The System Load
and computation/communication phases of two arbitrarily chosen processes are
shown for an eight node configuration (i.e. eight processes). Figure 2 shows about
0.25 seconds of the execution time. In particular, three principle phases of the
CG-algorithm as introduced in Table 1 are displayed.

The upper curve in Figure 2 shows the System Load. Here, 100% indicates
that all eight processors are working concurrently. An average utilization of
nearly 100% is reached, i.e. the parallel implementation of the CG algorithm is
able to use almost the full system power. The two Gantt graphs of processes four
and eight show calculation phases (black) and communication phases (white).
Typically, more than 50% of the execution time of one CG step is taken by
phase (a). Building the global sums (phases (b) and (d)) takes more time than
exchanging the local vectors in phase (f), although much more data have to be
transferred in phase (f).

If more computation nodes are used, the calculation time of phases (a), (c),
and (e) is reduced. In contrast, the time for the communication phases (b) and (d)
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Fig. 1. Speedup for matches of 256 x 256 pixels images and 512 x 512 pixels images.

!
System
Load
7.152 7.252 sec
Frocess 4
T.012 T.072 T.132 7.182 T.252 sec
Frocess 8
7.182 7252 se0
Phase a b o daear a b e def a b c daf

Fig. 2. System Load and computation/communication phases of the arbitrarily chosen
process 4 and process 8 for an eight node configuration.
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is increased. For larger numbers of nodes this leads to a lower efficiency. This
might become crucial while matching two images of relatively small sizes. How-
ever, the images to be matched in the HNSP project have a high resolution and
thus large sizes.

5 Results

Comparing the template 117 with the reference image 116 shows a difference of
||T — R||2 &~ 10361 in the Euclidean norm, cf. Fig. 3. After applying 500 steps of
the outer loop of the elastic matching algorithm the difference has been reduced
to |[Ts00 — R||2 = 3123, which is ca. 30.1%.

. From the morphological point of view this can be considered as an adequate
result. Irrespectively to the fact that there exists no other method for solving this
kind of deformation problem, this technique can be considered as a sophisticated
procedure to match images of tissue sections of the whole human brain.

6 Conclusion

The presented method allows the reconstruction of deformed images. The tech-
nique is also useful in order to align images from other modalities like PET,
MRI, EEG (electroencephalography). In addition this method can be adapted
easily to multimodal image matching. Moreover, this method can be extended
to a v&riet}L of matching problems.

The parallel implementation makes the approach applicable and attractive
for medical image processing applications, especially those from the human neu-
roscanning project. The parallel implementation allows the matching of images
resulting from high resolution sections. Thus, linear artifacts arising from down-
scaling and bilinear interpolation can be reduced using large sized images in the
discrete non-linear elasticity model.

(From the medical point of view, further work has to be performed by in-
vestigating and interpreting the results. Up to now we do not know what is
actually the best match in medical sense, what is undermatched and which re-
sult is overmatched (corrected template and reference are identical). ;From the
mathematical point of view a convergence proof of the overall algorithm is under
work.

However, the method is a promising tool for the reconstruction process. In
the future we will also parallelize the method using a multigrid solver and in par-
ticular a direct solver based on fast Fourier-type techniques (FFT) [8]. Therefore,
different moduls for solving the system of linear equations with appropriate par-
allelization strategies have to be supplied.

Our implementation demonstrates that the elastic matching algorithm pro-
duces promising results in a reasonable amount of time on a high performance
cluster system.

Acknowledgements We are indepted to A. Folkers and J.-M. Frahm for
implementing parts of the algortithm.



|9 — R||]2 = 10361 [|T200 — R||2 = 3123

Fig. 3. Upper left: 116 (Reference R), upper right 117 (Template T'), (both 512 x 512
pixels, 256 gray levels, note: differences can hardly be seen by human eyes), lower left:
|T' — R, lower right: |Ts00 — R|. Here, only small differences in comparison to the first
subtraction image remained, reduction: ||Tso0 — R||/||T — R|| = 30.1%.
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