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Abstract

This paper describes an image acquisition and process-
ing chain toward the analysis of images of thin histologic
sections of the cerebral human cortex. We are particularly
interested in the spatial distributions of nerve fibers, the
inhomogeneities of which indicate architectonic and func-
tional changes between different cortical areas. We there-
fore focus on the development of a specific optical and al-
gorithmic chain to acquire histologic images in an appro-
priate resolution, and to enhance, segment, skeletonize and
separate nerve fibers in these images. The processing re-
sults prepare the images for subsequent local measurements
of nerve fiber orientation, fiber lengths, fiber density, area
fraction occupied by fibers, and others.

1. Introduction

This paper deals with the acquisition and processing of
images of thin histologic sections of the human cerebral
cortex. In different regions of interest (ROIs) of such im-
ages, the nerve fibers may be homogeneously or inhomo-
geneously distributed. Inhomogeneities of the spatial distri-
bution in adjacent cortical areas are indicators of architec-
tonic changes (transitions) which correlate with functional
changes. To allow the detection of such changes, the nerve
fibers in the sections are first selectively stained to increase
their contrast in the acquired images. Changes of their dis-
tribution properties, however, cannot always be detected by
a human observer without quantification [6]. Earlier, such
quantification algorithms were developed for histologic im-
ages of cell profiles [10], where the volume fraction oc-
cupied by cell profiles was locally estimated. For nerve
fiber analysis, however, this quantification approach is only
partly sufficient because nerve fibers are much thinner and

possess a geometry and morphology very different from
those of the cell bodies in [10]. Therefore, we focus here
on an image processing chain which enhances, segments,
skeletonizes and separates nerve fibers. Based on processed
versions of an input image at the various stages of our pro-
cessing chain, distribution features like nerve fiber density,
nerve fiber lengths, area fraction occupied by fibers, fiber
orientation, and others can locally be measured.

2. Image acquisition

The images are acquired from thin histologic sections
of the cerebral human cortex by a video microscope (Ax-
iophot microscope and Axiocam scanner camera, Zeiss Vi-
sion). Before acquisition, the nerve fibers are stained. (In
detail,20�m thick histologic sections were stained for 24
hrs in a0:1% silver nitrate borax buffered solution followed
by development in1% gold chloride,2% oxalic acid and5%
sodium thiosulphate. The stained sections were dehydrated
and mounted with Entellan.) The position of the histologic
section relative to the video microscope is controlled along
three orthogonal axes by motors. The motors of thex-y-
plane shift an observer-defined ROI of the histologic section
meander-like through the field of view of the microscope,
which captures and digitizes the ROI in a mosaic-like man-
ner. After each shift, the field of view is recorded as an 8-bit
grey-level image of512�512pixels. By measurements, we
verified that each pixel of the acquired images corresponds
to an area of0:503 � 0:503�m2 of the histologic section,
what proved to be well suited for computerized analysis of
neurons and nerve fibers. On the screen, the images appear
with a size of170 � 170mm2. For the given screen, this
magnification by a factor of 660 is determined by the ob-
ject lens, which contributes a factor of 20, by an additional
lens (Optovar) positioned between object lens and camera
contributing a factor of 1.25, and finally by the projection



Figure 1. Tile of size512 � 512 pixels of a histologic
section image.

geometry, which results in an another factor of 26.4. As
shown in Fig. 1, the nerve fibers appear as a web of dark
elongated structures in these images. The dark blobs also
visible in Fig. 1 are cell nuclei, which must be eliminated
for nerve fiber analysis.

3 Image processing

3.1. The Processing Chain

The purpose of our algorithms is to provide information
about the nerve fibers at different levels of abstraction. The
full chain is shown in Fig. 2. First, the stained fibers are
enhanced relative to other structures, while simultaneously
large cell nuclei are removed. The enhanced fibers can then
rather reliably be segmented by a thresholding algorithm. In
the resulting binarized image, nerve fibers are represented
by black lines of corresponding widths. The final step is to
separate and disentangle the fibers by skeletonization. Since
the mosaicked images of the histologic sections may be very
large (a full image of a section of about7�2:8mm2 consists
of 27� 11 tiles of512� 512 pixels each) the processing is
applied to each tile individually, with overlap where appro-
priate.

3.2. Nerve fiber enhancement

In the grey level images, the stained nerve fibers appear
as dark and narrow objects. A well suited approach to en-

Figure 2. Diagram of the image processing chain.

Figure 3. External tophat transform of Fig. 1.

hance these is the external top-hat transform [4, 8]. This
transform of an image is defined as the difference between
the morphological closing of the image and the image it-
self. We used a binary square window of9 � 9 pixels as
structuring element. The closing is then realised by a max-
imum operator followed by a minimum operator inside a
9� 9-pixel sliding window, which corresponds to a size of
4:5� 4:5�m2. This is larger than the diameter of the nerve
fibers, but smaller than the cell nuclei. The sliding max-
imum operator thus removes the fibers, while the sliding
minimum restores background structures — including the
cell nuclei which are not completely removed by the maxi-
mum — affected by the maximum operator. For computa-
tional simplicity, both the maximum and minimum opera-
tor are realized in a separable manner by 1D-masks applied
successively along rows and columns. The difference im-
age then mainly contains fibers. A top-hat filtered result is
shown in Fig. 3.

3.3. Nerve fiber segmentation

In the tophat-transformed images, the stained nerve
fibers are generally dark against a mainly bright back-
ground, so that segmentation by thresholding appears feasi-
ble. To find the threshold, we seek a parameterless and un-



supervised method. These criteria are met by Otsu’s thresh-
old selection method [9]. The method first caclculates the
normalized grey level histogram of the tophat transformed
image. Thresholding can then be viewed as an unsuper-
vised classification problem into the two classes “fibers”
and “background”. The classes are described by their class
mean values, class variances and class prior probabilities.
Any given threshold divides the histogram into two clusters,
from which these quantities are estimated. The threshold is
selected such that measures of class separability are maxi-
mized. Three equivalent such measures are discussed in [9].
In the end, the threshold is determined such that the sum
of the in-class variances weighted by their estimated class
prior probabilities is minimized. This is identical to max-
imizing the between-class variance, defined as the squared
distance between the two class means weighted by the class
prior probabilities. Note that the class prior probabilities
indicate the fractions occupied by fibers and background,
respectively, in the analyzed image.

We apply the thresholding approach to each mosaic tile
of 512 � 512 pixels individually. To enforce some coher-
ence between neighbouring thresholds, the normalized his-
tograms are actually calculated from overlapping regions of
size600�600 pixels. Furthermore, the signed tophat trans-
formed images are first rescaled to 0-255 by an affine trans-
form. The class separability measures in [9] are invariant to
such an operation. (Indeed, in [9] the weighted sum of the
in-class variances is normalized by the total image variance,
which is independent of the threshold, to achieve this invari-
ance.) The segmentation result is a binary image where the
nerve fibers are represented by black lines of corresponding
widths (Fig. 4).

3.4. Nerve fiber skeletonization

From the segmented nerve fibers, quantities like area
fraction occupied by the fibers and similar measures can al-
ready be locally computed. Other measures require counts
of nerve fibers, which first need to be separated. To sepa-
rate the nerve fiber lines, it is advantageous to convert each
line into its skeleton. Hence, the next step is to skeletonize
the fiber segments [7, 2]. The purpose of skeletonization
is to thin the fiber segments to lines one pixel wide. These
lines should be approximately in the middle of the origi-
nal segments rather than close to segment edges. Also, the
skeletonization algorithm should preserve intersections of
fiber segments. Moreover, skeletonization should preserve
single segments, i.e. a segment must not be separated into
non-connected lines.

To thin segments, the skeletonization algorithm removes
object pixels subject to the criterion that doing so does not
lead to a fragmentation of the object. To obtain skeleton
lines which correspond roughly to the middle axes of the

Figure 4. Segmentation result for Fig. 1, obtained by
thresholding its tophat transformed version in Fig. 3.

fiber segments, object pixels are removed iteratively from
the different object edges (north, south, east, west) by re-
peatedly scanning the image matrix. For each object edge,
the conditions which permit to remove an object pixel [1]
can rather compactly be expressed [11] using the features
“connectivity number” and “crossing number” [12]. For the
implementation, these conditions can be captured by binary
patterns in the3 � 3-neighbourhood of a tested pixel [2].
These patterns are shown in table 1.

For each object edge pixel, the algorithm compares the
3 � 3-neighbourhood to the these patterns, depending on
whether the pixel is located at a north, south, east or west

Table 1. Test pattern set for the north, south, east and west
edges of binary objects. Here, object pixels are indicated by
ones, and background pixels by zeros. The pixels labelled
by X may take either the value one or the value zero.

North South East West

1 1 1 0 0 X 1 X 0 X X 1
X P X X P X 1 P 0 0 P 1
X 0 0 1 1 1 1 X X 0 X 1

X 1 1 X 0 X 1 1 X X 0 X
0 P 1 1 P 0 1 P 0 0 P 1
X 0 X 1 1 X X 0 X X 1 1



Figure 5. Skeleton of Fig. 4.

edge. The object edge pixel is removed from the object
(i.e. it is relabelled as a background pixel) if its3 � 3-
neighbourhood is found to be identical to one of the test
patterns. These iterations are repeated until a stable skele-
ton is reached.

Fig. 5 shows the skeleton obtained from the segmenta-
tion in Fig. 4. To allow a better visual assessment of the
extracted nerve fibers, the skeleton is shown in Fig. 6 to-
gether with the original in Fig. 1. In a similar manner as for
segmentation, skeletonization is applied separately to each
mosaic tile of size512 � 512 pixels, with a small overlap
between the segmentations of neighbouring tiles.

The described skeletonization algorithm preserves bifur-
cations and intersections. Such bifurcations and intersec-
tions are, however, often caused by projective overlap of
fibers in different depths of the histologic section. Based on
the skeleton, we have implemented three different options
to separate different nerve fibers:

� The bifurcations and intersections of the skeleton are
assumed to correspond to true fiber branchings in the
histologic section, and are thus kept unschanged.

� Bifurcations with a small angle between the two
branches are assumed to represent true nerve branch-
ing, while those with larger angles are regarded as re-
sulting from projective overlap. In this option, branch-
ings with angle between 70 degrees and 90 degrees are
decomposed into two non-connected fibers.

� All bifurcations and intersections of the skeleton are
regarded as stemming from projective overlaps, and

Figure 6. Skeleton of Fig. 5 overlayed over the original
in Fig. 1.

are thus decomposed into their individual branches.

3.5. Postprocessing of the skeleton

The resulting skeletons are generally not yet error-free.
Firstly, as can be gathered from Fig. 6, there may occur
very short erroneous lines which do not correspond to nerve
fibers. These errors can be caused by spurious regions
falsely detected by the segmentation algorithm. Further-
more, thick lines with outgrowths in their edges may cre-
ate false branchings. We therefore remove all lines shorter
than 14 pixels, corresponding to a distance of about7�m or
less in the histologic section. The result of this operation is
shown in Fig. 7.

The second problem in the skeleton images are occa-
sional circular structures which do not exist in real neuronal
tissues. These artifacts are caused by the projective overlap
of several nerve fibers distributed in the depth of the thin
tissue sections. We separate these using the the flood-fill al-
gorithm in Foley [5]. The algorithm starts by flooding the
skeletonized image from its edges, viewing the skeletonized
fibers as dams. Small areas which remain “dry” lie within
such circular structures. After checking for additional dams
inside each detected circular structure undesired circles are
resolved by first converting the area inside the circles to
fiber segments, which are subsequently skeletonized. The
algorithm is straightforword and highly recursive. The re-
cursivity, however, led to stack overflows. Instead of pro-
cessing the whole stack, the algorithm is therefore imple-



Figure 7. Skeleton of Fig. 5 after removal of lines shorter
than 14 pixels.

mented with a vector container. The result is shown in Fig.
8. Evidently, circular structures have been removed. Since
this algorithm, however, displaces the remaining skeleton
lines, it should be applied with caution.

4 Conclusions

We have presented an image processing chain which
allows to enhance, segment, skeletonize and disentangle
nerve fibers in images of histologic sections acquired by a
video microscope. The different stages of our processing
chain prepare the images for analysis of fiber density, fiber
orientation, fiber lengths and others. We currently work on
two improvements of this chain: firstly, we seek increase
the segmentation performance by combining Otsu’s thresh-
old selection with a two-threshold procedure, similar as ap-
plied in the Canny edge detector [3]. Secondly, we seek to
resolve closed loops in the skeleton by a less severe alter-
native to the flood/fill algorithm. Future work will then be
directed toward analysis of nerve fiber distributions in the
processed images.
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