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fischer@math.uni-luebeck.de

Received December 1, 2004; Revised February 22, 2006; Accepted April 27, 2006

First online version published in September, 2006

Abstract. The physical (microtomy), optical (microscopy), and radiologic (tomography) sectioning of biological
objects and their digitization lead to stacks of images. Due to the sectioning process and disturbances, movement
of objects during imaging for example, adjacent images of the image stack are not optimally aligned to each other.
Such mismatches have to be corrected automatically by suitable registration methods.

Here, a whole brain of a Sprague Dawley rat was serially sectioned and stained followed by digitizing the
20 μm thin histologic sections. We describe how to prepare the images for subsequent automatic intensity
based registration. Different registration schemes are presented and their results compared to each other from
an anatomical and mathematical perspective. In the first part we concentrate on rigid and affine linear methods
and deal only with linear mismatches of the images. Digitized images of stained histologic sections often ex-
hibit inhomogenities of the gray level distribution coming from staining and/or sectioning variations. Therefore,
a method is developed that is robust with respect to inhomogenities and artifacts. Furthermore we combined
this approach by minimizing a suitable distance measure for shear and rotation mismatches of foreground ob-
jects after applying the principal axes transform. As a consequence of our investigations, we must emphasize that
the combination of a robust principal axes based registration in combination with optimizing translation, rota-
tion and shearing errors gives rise to the best reconstruction results from the mathematical and anatomical view
point.

Because the sectioning process introduces nonlinear deformations to the relative thin histologic sections as well,
an elastic registration has to be applied to correct these deformations.

In the second part of the study a detailed description of the advances of an elastic registration after affine linear
registration of the rat brain is given. We found quantitative evidence that affine linear registration is a suitable starting
point for the alignment of histologic sections but elastic registration must be performed to improve significantly the
registration result. A strategy is presented that enables to register elastically the affine linear preregistered rat brain
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sections and the first one hundred images of serial histologic sections through both occipital lobes of a human
brain (6112 images). Additionally, we will describe how a parallel implementation of the elastic registration was
realized. Finally, the computed force fields have been applied here for the first time to the morphometrized data of
cells determined automatically by an image analytic framework.

Keywords: neuroimaging, human and rat brain serial sections, affine registration, elastic registration, matching,
alignment, warping, 3D-reconstruction

1. Introduction

The three dimensional-reconstruction (3D-
reconstruction) of images derived from physical
(microtomy, serial sawing of plastinated structures),
optic (conventional confocal microscopy, laser
scanning confocal microscopy), and diagnostic imag-
ing (magnet resonance imaging (MRI), functional
magnetic resonance tomography (fMRI), computer
tomography (CT)) need to be spatially reconstructed
for the purpose of visualizing the three dimensional
extension of structures. Meanwhile, the 3D-recon-
struction and volume visualization delivers important
information for preoperative planing in neurosurgery
(Desgeorges et al., 1997) and other disciplines
(Lamadø et al., 2000).

Since the physical principles of microscopical op-
tics have been elaborated (Abbe, 1873) it has be-
come customary to slice thick specimens in order to
reduce mass thickness and provide translucent ob-
jects, for microscopy. The first 3D-reconstruction us-
ing serial sectioning and modelling via a wax plate
technique has been published by Born (1883) fol-
lowed by an epochmaking 3D-reconstruction of the
retina (Sjöstrand, 1958). A few years later Glaser
and Glaser (1965) demonstrated a computer gen-
erated 3D-reconstruction from images derived from
serial sectioning analyzed by a light microscope.
Since these striking works many articles dealing
with different kinds of 3D-reconstructions based
on microscopical data (transmission electron micro-
scope (Bron et al., 1990; Gremillet et al., 1991),
lightmicroscopy of semithin-sections (Schmolke and
Fleischhauer, 1984; Schmolke, 1996), lightmicroscopy
of 5 to 50 μm thick sections have been published
(Schormann and Zilles, 1998; Ourselin et al., 2001b).

A disadvantage of sectioning, staining and mounting
the sections on the slides is a lack of spatially perfect
matching when the sections are superimposed. Nev-
ertheless, such undesirable mismatching of successive
sections must be corrected. Correcting mismatches or

sequential alignment is called registration. Presently,
registration of serial sectioned specimens is performed
with digitized objects in terms of images although
analog material can be registered as well (Sjöstrand,
1958). Because serial sectioning is a widely used
technique to gain an insight into the three dimen-
sional structure of one object or to get an idea of
the distribution of biological objects (cells, fibers,
proteins) in 3D, many anatomists and biologists re-
gard it as indispensable. The problem arises as to
how to register. Since there exist different kinds of
registration techniques (Brown, 1992; van den Elsen
et al., 1993; Maintz and Viergever, 1981; Lester and
Arridge, 1999; Modersitzki, 2004) for different regis-
tration problems, in particular for the alignment of im-
ages of serial sections, we will concentrate in the first
part of this contribution on affine linear registration in
difference to other—especially nonlinear—techniques
(Broit, 1981; Horn and Schunck, 1981; Bajcsy and
Kovačı́č, 1989; Christensen, 1994; Viola and Wells,
1993, 1997; Bro-Nielsen and Gramkow, 1996; Thirion,
1998; Modersitzki et al., 1999; Schmitt and Eggers,
1999; Schmitt et al., 1999) which will be considered in
detail in the second part.

Prior studies presenting 3D-reconstructions based on
serial sectioning of biological material have one aspect
in common: the alignment is done manually (Ware
and LoPresti, 1975; Dierker, 1976; Macagno et al.,
1976, 1979; Perkins and Green, 1982; Johnson and
Capowski, 1983; Street and Mize, 1983; Aferzon et al.,
1991; Baumann and Scharf, 1994), semiautomatically
or with algorithms which have been fitted to a specific
series of images. Manual alignment is extremely time
consuming if matching of many images is necessary
and a number of different image stacks have to be reg-
istered. However, doing the registration in a manual
mode limits information available regarding the qual-
ity of the registration and mismatches.

As a means to perform the registration automatically,
a robust registration technique with well defined re-
quirements as to the biologic material and its resulting
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images have been developed, optimized and imple-
mented. In a first approach we concentrated on prepro-
cessing the raw images and on affine linear registration
using the well-known and well-established principal
axes transformation (PAT) (Barnard and Thompson,
1980; Hibbard and Hawkins, 1988; Alpert et al., 1990;
Zhao et al., 1993; Rusinek et al., 1993; Banerjee and
Toga, 1994; Schormann and Zilles, 1997). The PAT
is able to improve the alignment due to translational
and rotational (rigid) mismatches between two adjacent
images. However, it is unable to correct shear compo-
nents (Schormann and Zilles, 1997) and may not lead
to optimal registration. Shearing plays an important
role in images of serially sectioned biological objects
(Schormann et al., 1997). Thus, PAT may not be the best
registration technique for a histologic serial sectioning.

The results of the different registration experiments
done in this work are presented by 3D-reconstructions
and isoplanar visualizations to compare different rigid
and affine linear registration methods. Essential modi-
fications (robust version of PAT, first order statistics for
parameter estimation) of affine linear registration tech-
niques for histologic serial sectioning of rat brains are
described. These modifications proved to be important
to obtain high quality and user independent matched
image stacks for 3D-reconstructions, 3D-visualizations
and further spatial analysis.

However, the improvements are insufficient because
we aim to register locally to obtain approximately the
same relations of gravity centers of cells as in the in-
tact brain. The 3D-reconstruction of gravity centers has
several reasons which are examplified shortly in the
following.

Beside the connectivity, receptor, neurotransmitter
and molecular layout of neurons their spatial distri-
bution and consequently their interneuronal distances
are fundamental for neuronal information processing
(Young, 1992, 1996; van Essen, 1997). Suppose, that
the same neuronal population of a human forebrain
with the same molecular layout is distributed in a spa-
tial random manner. In such a model only the axons
are shortened or elongated, whereas the dendritic struc-
tures, distribution of synapses and connectivities are
preserved. The mean distances in between neurons
which constitute micro-, macro- (Schlaug et al., 1995;
Mountcastle, 1997) or hypercolumns (Okajima, 1986;
Kuljis and Rakic, 1990; Tanaka, 1991; Yeshurun and
Schwartz, 1999) and local circuits or micro-circuits
(White, 1989; Abeles, 1991) that can be considered
as functional entities of neuronal ensembles or cell as-

semblies (Hebb, 1949; Braitenberg, 1978; Palm, 1982;
Gerstein et al., 1989), would increase and therefore the
duration of transmitting action potentials, too. Such a
modification would effect the integration of synchro-
nized action potentials and the neuronal information
processing (Arbib, 1995).

In order to develop an elementary and neurocausal
understanding of neuronal information processing we
elaborated a method to represent these basic structural
information of neuronal tissue, i.e. the exact spatial
localization of all neurons of a human brain.

To determine the exact spatial location of single
neurons in brains confocal laser scanning microscopy
(CLSM) seems to be a promising method. However,
the depth of optical sectioning is limited to approxi-
mately 400 μm (Pawley, 1995) and neurons have to be
demarked by a fluorochrome whereby the way of diffu-
sion is relative long. Scanning whole human brain sec-
tions by a confocal microscope is not possible at present
because there exist no CLSM that can shift sections
continues over an area of 120 mm × 120 mm. Also
μMRI (micro magnetic resonance imaging) technol-
ogy (Benveniste and Blackband, 2002) has not reached
such a resolution that is necessary to detect nonla-
beled (Hoehn et al., 2002) single neurons whereby layer
(Silva and Koretsky, 2002) and column (Thompson
et al., 2003) specific activation signals can be imaged by
the BOLD-technique. Since there are no other methods
available than light microscopy to detect single neu-
rons and characterize them by immunohistochemistry,
hybridization or other techniques in a non-sectioned
human brain it is essential to minimize the disintegra-
tion of the brain. This implies to section systematic
and serial the whole forebrain in defined exactly par-
allel spatial planes instead of the production of tissue
blocks of certain cortical areas or subcortical structures.
Furthermore, it is important to disintegrate minimally
the tissue structure because we aimed to reconstruct
the whole spatial information of all neurons. This can
be done more reliable and easier for practical reasons
by sectioning in parallel planes serially because the
resulting sections need not to be registered in a three-
dimensional puzzle. However, producing large sections
cause other problems.

The main problem is that relative thin (20 μm)
histologic sections (Fig. 14(b)) are necessary to detect
neurons by means of videomicroscopy (Schmitt et al.,
2005). The resulting area of the sectioning is relative
large with respect to its thickness. Thus, deformation
artifacts are introduced with a large probability by a
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chain of physical effects within tissue processing. All
these physical forces have one feature in common:
they are nonlinear and thus affect different and
singular parts of the foreground objects in an image
of digitized sections. Furthermore, these deformations
are accompanied by micro- and macro-cracks, wrin-
kling, and partial loss of tissue (Figs. 15(c), 17(a),
(b)). Therefore, after super-positioning of consecutive
histologic sections, those areas which fitted to each
other before histologic processing (i.e., sectioning,
stretching, mounting, staining) do not fit together
anymore (Fig. 17(c)) and the gravity centers of neurons
in adjacent sections are displaced, too. Because the
exact spatial localizations of neurons are necessary in
order to develop the proposed spatial structural model
as described earlier, the deformation of posthistologic
positions must be corrected.

This means, that a suitable correction method that
should work automatically must be applied to the de-
formed contents of images. Because the imaged ef-
fects of physical deformations should be eliminated,
it seems reasonable to use a physical model that can
describe the behavior of elastic materials. The the-
ory of elasticity delivers the theoretic framework that
can be applied to images, too; (cf., e.g. Sokolnikoff,
1956; Green and Zerna, 1968; Green and Adkins,
1970; Budo, 1990; Lurie, 1990; Kosevich, 1995; Russo,
1996; Ciarlet, 2000; Fu and Ogden, 2001). Broit (1981)
and Bajcsy and Kovačı́č (1989) were the first authors
who published this idea of applying elasticity the-
ory to deformed image contents in order to correct
the deformation to the non-deformed state. The roots
of this idea are going back to works of Barnea and
Silverman (1972), Fischer and Elschlager (1973) and
Widrow (1973). Generally, such a concept of aligning
an image to another is known as image registration
(Brown, 1992; Maurer and Fitzpatrick, 1993; Toga and
Banerjee, 1993; van den Elsen et al., 1993; Maintz and
Viergever, 1981; Lester and Arridge, 1999; Hill et al.,
2001). The elastic registration has been applied since
1981 by many authors (Christensen, 1994; Schormann
and Zilles, 1998). Formulating the registration problem
in a variational setting based on a distance measure and
a regularizer, it is possible to solve it without further in-
formation on the underlying deformations or the under-
lying images, like, e.g., landmarks (Bookstein, 1984;
Amit et al., 1991).

There exist only a few attempts to determine the
material behavior of fresh brain tissue (Miller and
Chinzei, 1997). However, no measurements of paraffin

embedded tissue at different temperature and applica-
tions of forces like sectioning are available. In addition,
it is questionable to improve the quality of the elastic
model, since the deformation also stem from different
forces, like, e.g., thermic processes.

The scope of this study aims to present the results of
whole brain preparation, serial sectioning, large histo-
logic section staining, digitalization and applying elas-
tic registration to the images of deformed histologic
sections. In this preliminary work we will present first
results of an elastic registration of 100 sections from
altogether 6112 sections through the occipital lobes of
a human brain.

2. Material and Method

2.1. Material and Histologic Staining

An adult male Sprague-Dawley rat was anesthetized
with an intraperitoneal injection of Nembutal and
Rompun in 0.9% NaCl. The blood was washed out with
100 ml of Ringer-Heparin solution through the left ven-
tricle by transcardial perfusion. The brain was then re-
moved from the cranial cavity and fixed for 48 hours in a
phosphate buffered 4% formaldehyde solution (pH 7.0)
followed by rinsing in tap water. The brain was dehy-
drated through an increasing concentration of ethanol
solutions. Ethanol was substituted by three changes of
xylene. After passing this intermedium it was embed-
ded in paraffin wax (Paraplast Plus, Sheerwood (8889–
502005), 58–60◦C melting point). Using a sliding mi-
crotome (Polycut, Reichert Jung) sections of 20 μm
thickness were produced. To minimize the deformation
introduced by the sectioning process, frontal sections
from the olfactory bulb to the cerebellum were made.
This lead to 503 tissue sections for this particular brain.

The slices are positioned manually on standardized
gelatinized slides. The sections were stained in gallo-
cyanin chromalum and mounted with Entellan (Merck
1.07961.0500). An extensive overview of various suit-
able stainings and their properties with respect to image
analysis is given in Schmitt and Eggers (1997a,b).

The forebrain of a 65 years old human male with-
out any neurologic or psychiatric disorders who died
in consequence of a cardiac infarction was removed 11
hours postmortem. The brain was fixed in 4% phos-
phate buffered isotonic (0.9% NaCl) formalin solu-
tion for 3 months at 4◦C. Before dehydration the
brain had a volume of 1211 ml, a height of 108 mm
(between the margo superior and margo inferior), a
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width of 140 mm (between the frontal superior gyrus
and supramarginal gyrus of both hemispheres) and a
length (between the frontal pole and occipital pole)
of 170 mm. After immersion fixation the brain was
dehydrated and embedded in paraffin wax at 60◦C.
This was followed by dispension and slow evacua-
tion until 15 mmHg was reached for about 3 hours
until no gas bubbles emerges out of the sulci any-
more. The paraffin wax block was trimmed care-
fully and fixed on a block holder of the sliding
microtome (Polycut R©, Reichert Jung) (Fig. 14(b)).
Just before the paraffin wax block on the block holder
was shifted against the knife (D-knife, cutting angle 0◦)
a color image (1352 × 1795 pixels, 24 Bit) depicted
from the surface of the wax-block of the embedded
brain was transmitted to a computer (Fig. 15(b)). Sec-
tioning was followed by flattening the jolted sections
in a 40◦C warm water bath.

Small wrinkles and folds are removed by teasing
apart, using forceps. After flattening a section it was
manoeuvred very carefully on special manufactured
slides. The section are blotted lightly with moistened
blotting paper to remove excess water and to increase
contact between section and slide. After drying the
prepared sections for at least 24 hours at 37◦C they
can be de-paraffined via xylene in a descending
series of 2-propanols. This is followed by staining
in gallocyanin chrome alum (a histologic section is
shown on the flat bed scanner in Fig. 14(c)) because
the perikaryon staining that also reacts with RNA
and DNA gives sufficient homogeneous results, i.e.
no trends of the staining intensity within the section
are visible (Schmitt and Eggers, 1997a,b). The latter
effect is important for a reliable image analysis of
the homogeneous stained neurons. After the staining
sections were dehydrated in ascending ethylalcohol
solutions and cleared in three xylene dealcoholizing
agents. For the whole deparaffination, staining and
dehydration procedure we have constructed a transport
device of stainless steel which do not interact with the
gallocyanin chrome alum staining and which is able
to transport up to 50 large histologic sections. This
is important because 6112 sections of the brain were
produced and had to be stained. After dehydration the
sections were embedded in Entellan (Merck, 1.07961)
and mounted under a cover glass (Fig. 14(c)).

2.2. Digitizing

Each section of the rat brain was digitized using a
high resolution transparent flat-bed scanner (FBS) at

a resolution of 6 μm per pixel length, see Schmitt and
Eggers (1999) for details. Finer structures like lami-
nations, subcortical nuclei and nerve fiber tracts can
already be observed at this resolution. The digitization
results in mν × nν images Sν , ν = 1, . . . , N = 503,
where mν varies between 913 and 1275 and nν varies
between 1280 and 1883. The images have gray val-
ues in [0, 255]. Thus, each section is now represented
by a matrix Sν ∈ [0, 255]mν×nν , where Sν

i, j represents
the gray value at the pixel (i, j). For simplicity of pre-
sentation, we assume that the images are embedded
into 1900×1900 frames with unique background (gray
value: 255), such that Sν ∈ [0, 255]1900×1900 for all ν.
We present registration results for the 1900 × 1900
sequence as well as for a down-scaled 512 × 512
sequence.

Before embedding and staining, the human forebrain
was tomographied by a Magnetom SP4000 (1.5 T, T1

weighted, Siemens) in order to receive a series of im-
ages of the brain before shrinkage caused by the embed-
ding procedure effect the brain. The section thickness
was 1 mm, 122 images were produced, with a size of
512 × 512 pixels.

The stained sections of the human forebrain were
digitized by a high resolution transparent flat bed scan-
ner (FBS) (DuoScan, Agfa) (Fig. 14(c)) at a resolu-
tion of 800 ppcm, i.e., 12.5 μm per pixel edge length.
This results in gray tone images B(ν), where ν runs
through all 6112 sections (Fig. 15(b)). Each image
is an m-by-n matrix, B(ν) = (b(ν)

i, j )
m
i=1

n
j=1, with gray-

values b(ν)
i, j ∈ {0, . . . , 255}, where m and n do depend

on ν.
The images were compressed lossless by the

Lempel-Ziv-Welch algorithm as tif-files and stored on
CD-ROMS. The uncompressed data of all FBS im-
ages are approximately 283 GB large. The smallest
image has a size of 5000 × 2000 pixels and the largest
11000 × 7000 pixels (Fig. 16). The sections were digi-
tized all with the same orientation. Therefore, they were
preregistered coarsely by the person who controlled the
scanner. Furthermore, the mean intensity was adapted
for those sections which were stained slightly more in-
tense so that stronger inhomogeneities as a result of
fluctuations of the section thickness or slight staining
inhomogeneities were compensated.

2.3. Hardware and Software

The computations were performed on a Pentium III
(1 × 1 GHz, 4 GB RAM, Linux) under MATLAB
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(6.2). The final visualization was obtained using T3D
(Fortner, 1999) and KS400 (Zeiss, 1992).

2.4. Preprocessing

Before the images are aligned, they must be prepro-
cessed because the affine registration technique applied
here is based on gray level intensities. Fluctuations of
the gray value distributions due to variations in section
thickness, staining and illumination inhomogeneities
can be adapted by the evaluation of gray value distri-
butions of the image foreground. The following pre-
processing steps (Fig. 1) have been applied.

1. Segmentation: We normalize such that the image
background is zero and foreground is greater than

Preparation,

embedding

serial sectioning

staining, mounting

6 μm resolution

digitalization
Segmentation Opening Region filling

Masking

original image with

binary region filled

image

Gray level mean

and variance of

the foreground of

each image

Smoothing the

mean and the

variance

distribution

Foreground homo-

genization by

smoothed means

and variances

Standard

PAT
Robust PAT

Affin linear

optimization of

shearing

Affin linear

optimization of

translation,

rotation, shearing

3D-Reconstruction 3D-Reconstruction3D-Reconstruction

InversionEmbedding

Figure 1. Flowchart of the preprocessing steps and registration schemes.

zero. This was performed by a segmentation based
on a simple threshold (Fig. 2B). The threshold τ ν is
controlled by the mean μν and variance σ ν of the
gray value distribution of each image,

μν = θ−1
∑

(i, j)∈�

Sν
i, j ,

σ ν = θ−1
∑

(i, j)∈�

(
Sν

i, j − μν
)2

,

where � = {(i, j) : Sν
i, j �= 0}, denotes the set

of non background pixels and θ the number of
its elements. The threshold is τ ν = max{0, μ −
2σ }.

This approach delivers satisfying segmentation
results after testing it with three different stacks of
images of histologic brain sections.
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Figure 2. Image processing steps before registration. (A) The original image of a coronal section through a brain of a Sprague-Dawley rat. Due

to projection within digitization, the image is mirrored around the x-axes. Before further processing steps, it is mirrored back. (B) Segmented

binary image. (C) Image after binary opening. (D) Image after filling. (E) Determining the largest x-maximum and the largest y-maximum of

the foreground objects over the whole image stack. (F) Each image is embedded into a background filled image of the size as given by the largest

x maximum and y maximum that has been previously found.

2. Morphologic operations: Opening (Fig. 2(C)) and
region-filling (Fig. 2(D)) were performed as de-
scribed by Dougherty (1993).

3. Masking: The so far pre-processed binary image is
used as a mask for the original image. In order to
avoid dispensable notation, we denote the masked
image again by Sν . Only such pixels of the inverted

gray level image were copied into the resulting im-
age that coincide with the foreground pixels of the
binary filled image.

4. Inversion and Homogenization: The images are in-
verted and normalized such that the background val-
ues become zero (Sν

i, j ← maxi, j {Sν
i, j } − Sν

i, j ). For
each image we compute the mean gray-value μν
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Figure 3. The foreground of each image is segmented and its mean and standard deviation of intensities calculated. The distribution of mean

intensities over all 503 foregrounds in the images is shown in (a) by arrow 1. The distribution is smoothed with a sliding averaging window of

the size of 8 (arrow 2), 16 (arrow 3) and 32 (arrow 4). In order to show that the size of the averaging window has only minor effects on the run of

the curve different sizes of windows are presented. The standard deviations of the foregrounds of each image are summarized in (b). The arrow

indicates the curve calculated by a sliding average of 8. In (c) the sum of pixels of each foreground object is plotted. The distribution coincides

with the macroscopic body of the rat brain. It can be used to detect stronger differences of adjacent foregrounds that present loss of tissue or

artifacts within the periphery of the object of interest.
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(brightness) and the standard deviation σ ν (contrast)
on the set of non-zero pixels �,

μν = 1

θ

∑
(i, j)∈�

Sν
i, j ,

(σ ν)2 = 1

θ

∑
(i, j)∈�

(
μν − Sν

i, j

)2

Filtering the sequences μν, σ ν , ν = 1, . . . , N , by a
sliding mean filter of length 2k + 1 (where we used
k = 7 with success), we obtain smoothed parame-
ters μ̂ν ,

μ̂ν = 1

2k + 1

k∑
j=−k

μν+k, σ̂ ν = 1

2k + 1

k∑
j=−k

σ ν+k,

where μν =μ1 and σ ν =σ 1 for ν < 1 and μν =μN

and σ ν = σ N for ν > N , respectively. Note that Ŝν

with

Ŝν
i, j = μ̂ν + σ̂ ν

σ ν

(
Sν

i, j − μν
)

for (i, j) ∈ � (1)

has mean μ̂ν and standard deviation σ̂ ν . However,
the gray-values of Ŝν

i, j may no longer valid. Thus,
we apply an obvious rounding of these numbers
and obtain a homogeneous image stack (Fig. 3).
Note that due to rounding, the parameters of the
resulting image Ŝν may not exactly fit the de-
faults. A repetition of the computation improves the
results.

This approach may propagade errors due to large
differences in the gray level distribution. Since we
have optimized the staining and sectioning proto-
cols Schmitt and Eggers (1997a,b) such strong vari-
ations do not occur. There exist further sophisti-
cated techniques (Dauguet et al., 2004; Malandain
and Bardinet, 2003) that solve homogenization
problems with large distribution difference very
efficient.

5. Embedding: The homogenized images are embed-
ded within the center of a new image. The width and
height of this image is larger than the maximal di-
ameter of the largest foreground object of the stack
of images.

2.5. Principal Axes Based Registration

The backbone of our affine linear registration is a vari-
ant of the principal axes transformation (PAT). The PAT

registration has been introduced to image processing by
Hu (1962) (see also Hibbard et al., 1987; Alpert et al.,
1990).

The idea is to find a restricted affine linear map
φ : R2 → R,

φ(x) = Ax + b =
(

a1 a2
a3 a4

) (
x1
x2

)
+

(
b1
b2

)
,

such that a reference image and the mapped template
image become similar.

PAT registration is strongly connected to the com-
putation of moments. Moments are used in classical
mechanics to characterize rigid bodies by the spatial
distribution of their masses (Symon, 1971). In our ap-
plication, the histologic sections are considered as mass
distributions of rigid bodies. From this distribution we
deduce geometrical features such as the mass centroid,
the principal axes (Fig. 4) and the extension of the body
with respect to the principal axes. The idea of PAT
registration is to map the template image such that the
geometrical features of the mapped template coincide
with those of a reference image.

Though PAT registration is well understood, easy to
compute, and fully automatic, it has some drawbacks.
One of the main drawbacks is that PAT registration is
not able to resolve shear components (Schormann and
Zilles, 1997) of a deformation which definitely arise in
our application.

Figure 4. The principal axes of one image (no. 345) of the processed

image stack is shown here.
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Figure 5. The rigid and\or affine linear registration methods may affect the spatial geometry of an object in dependence of the structure of

data and the original shape. This sketch shows a curved 3D-object that is sectioned (A). We would expect a complete and unwanted destruction

of the 3D-geometry of the biologic object (B) after aligning the sections from (A) only if the images of the sections are binary. Using gray tone

images, the 3D-geometry is preserved within the affine linear registrations applied here. However, smaller misalignments can be avoided (C)

only by bimodal registration using a 3D-data of undistorted reference images.

If the images to register would contain binary infor-
mation only, the underlying sectioned body is curved
and the projection or section planes are parallel then el-
liptic to round shaped objects may occur (Fig. 5) after
registration and reconstruction. In this example each
centroid of a foreground object in the binary images is
calculated at the same image location and a curved tube
would be transformed by the PAT method into a straight
tube because the foreground is symmetric and fore-
ground pixels have the same intensity or mass. There-
fore, it is not possible to decide if a foreground such as
a filled circle must be shifted or rotated in relation to
foreground in the following image. If the pixel inten-
sities are greater than 2 and not distributed symmetric
such as those in gray value images of brains the orig-
inal geometry will be preserved more but not totally
because each pixel intensity contributes to the location
of the centroid. This issue is analysed and disccused
in great detail in Malandain et al. (2004). However,
a total geometry preserving procedure must take into
consideration a stack of reference images of the same
object. Such a reference can be obtained by scanning
the postmortem brain by MRI (Ourselin et al., 2001b;
Schormann and Zilles, 1998; Schormann, 1996) before
the histologic procedure will be performed.

Another drawback is that the results of PAT regis-
tration are not based on a distance measure between
adjacent images and has thus no intensity based
optimality criterion. Therefore, we combine the PAT
approach with two minimizing techniques. In both op-
timization approaches the sum of squared differences
(SSD) were minimized between the reference and an
appropriately deformed template.

2.5.1. Standard Principal Axes. Our derivation for
the standard PAT is slightly different than usual
(Hibbard et al., 1987; Alpert et al., 1990; Schormann
and Zilles, 1997). We view an image as a density func-
tion S, i.e. S(x) ≥ 0 and

∫
R2 S(x)dx = 1. The last prop-

erty can easily be fulfilled by re-scaling the gray values
of the image. Choosing a set of reference densities G,
we are looking for the best approximation Ŝ ∈ G of S
with respect to the Kullback-Leibler distance (Kullback
and Leibler, 1951),

Ŝ := arg min

{∫
R2

S log
F

S
dx : F ∈ G

}
.

We then use geometrical properties of Ŝ in order
to describe S. For example, if one chooses the set of
Gaussian densities,

G := {gA,b : R2 → R | A ∈ R2×2, det A > 0, b ∈ R2},
where

gA,b(x) := 1

2π
√

det A
exp

(− 1
2
(x − b)T A(x − b)

)
,

the solution is given by A = CovS and b = cS . Here,
cS denotes the center of mass and CovS the covariance
matrix of the density S. Using moments

mi, j :=
∫

R2

xi
1x j

2 S(x1, x2)d(x1, x2)

we have

cS = (m1,0, m0,1)T, CovS =
(

m2,0 m1,1
m1,1 m0,2

)
− cScS

T.
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Since CovS is symmetrically positive semi-definite, it
permits an eigenvalue decomposition (Golub and van
Loan, 1989)

CovS = D(ρS)
S D(−ρS) (2)

where D(ρ) denotes a rotation matrix and 
 is a scaling
matrix,

D(ρ) :=
(

cos ρ −sin ρ
sin ρ cos ρ

)
, 
 :=

(
σ 2

1 0
0 σ 2

2

)
.

The geometrical features to be used are the center of
gravity cS = (cS

1 , cS
2 )T, the principal axes spanned by

(cos ρS, sin ρS)T and (−sin ρS, cos ρS)T, and the stan-
dard deviation of the distribution with respect to the
principal axes, σ S

1 and σ S
2 , respectively. The five pa-

rameters (
cS

1 , cS
2 , ρS, σ S

1 , σ S
2

)
(3)

can easily be determined from the moments mi, j , where
(i, j) = (0, 1), (1, 0), (2, 0), (1, 1), and (0, 2).

2.5.2. Robust Principal Axes. However, as it is well-
known (Kent and Tyler, 1988), Gaussian density esti-
mation is sensitive to outliers in the distribution and
corrupted images due to such outliers occur frequently
in images derived from thin histologic sections. Typical
outliers are, for example wrinkles, disruptions, pieces

Figure 6. Results of a standard PAT and robust PAT of images with a quadratic artifact with a large mass. (a) Unperturbed image registered by

the standard PAT. (b) Unperturbed image registered by the robust PAT. (c) Perturbed image registered by the standard PAT. (d) Perturbed image

registered by the robust approach. Note, in (d) that the misregistration after robust PAT application is not as large as applying standard PAT in (c).

of tissue that were torn out and artifacts. Thus, one
may replace the set of Gaussians by the set of Cauchy
densities,

C := {cA,b : R2 → R | A ∈ R2×2, det A > 0, b ∈ R2},

where

cA,b(x) := C(1 + (x − b)T A(x − b))−3/2

and the constant c has to be chosen such that∫
�

cA,b(x)dx = 1. For computational issues, we refer
to Kent and Tyler (1988).

Cauchy density estimation leads to a more robust
representation of the initial image. The influence of
mass far from the image centroid becomes dampened
and thus the impact of outliers is reduced. For this rea-
son, the robust approach is used throughout this paper
(Fig. 6).

This phenomenon is demonstrated by comparing the
geometrical features of the section S241 with those of
the artificially perturbed section, cf. Table 1 and Fig. 6.
As it is apparent from the figure and the numbers given
in the table, the robust approach is clearly preferable.

2.6. Optimality Based Affine Linear Registration

The geometrical feature σ ν
1 and σ ν

2 of the homogenized
images are used in order to estimate the spatial exten-
sions of the objects displayed. In particular we used a
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Table 1. Characteristics of the arbitrarily chosen image S241

(512×512 pixel) and an artificially perturbed copy using standard

and robust characteristics, see also Fig. 6.

Original Perturbed

Standard Robust Standard Robust

m 6.0 · 105 2.0 · 106 6.6 · 106 2.2 · 106

c1 165.64 167.58 181.07 173.90

c2 272.86 273.39 258.64 267.59

s1 46.31 38.20 60.09 44.01

s2 96.21 80.17 104.17 81.59

ρ −0.0146 -0.0118 0.2860 0.1363

sliding median filter of length 15 for our estimation.
Note, it is impossible to recover these extensions from
an individual image. If one does not pay attention to this
issue, one may map a sliced ball into a cylinder. For this
reason, we do not use a full optimization with respect
to all six parameters of a affine linear transformation.

Our optimization approaches (Fig. 1) are based on
the minimization of the sum of squared differences
(SSD)

SSD[R, T ; A, b] :=
∑

x

(T (Ax + b) − R(x))2, (4)

with respect to the matrix A and the transformation b.
In the next subsections we discuss particular choices
for A.

For the evaluation of T (Ax +b) (T: template image,
R: reference image) we exploit a bi-linear interpolation
scheme and Euler coordinates. Since we are consider-
ing intramodal registration this cost function can be
applied as proposed by different authors (Schormann
and Zilles, 1998; Hajnal et al., 1995). Other promising
similarity measures like mutual information (Holden
et al., 2000) and gradient difference (Penney et al.,
1998) were not investigated here.

In histological sectioning, shearing is a very likely
deformation, because the sectioning is always per-
formed from one fixed direction. Therefore, our first
approach (α-optimal), is to optimize with respect to
the shear.

In the second so-called partial-optimal approach, we
optimize with respect to rotation, shearing and transla-
tion. In contrast to a full affine linear approach, the scal-
ing of the transformation is not optimized but estimated
from global parameters of the complete histological
series. For both approaches the PAT registered images
serve as starting points for a Gauss-Newton type opti-
mization method.

2.6.1. Shearing Optimization (α-Optimal Approach).
The optimization of the SSD with respect to the shear
component of the deformation starts after robust PAT
registration is passed.

The affine linear map Aαx + bα between two con-
secutive sections, the first one refereed to as a refer-
ence (R) and the second one as a template (T ), is com-
puted by minimizing the SSD (4) with respect to α ∈ R
setting

Aα = D(−ρT )(
T )
1
2 D(α) (
R)−

1
2 D(ρR)

and bα = cT − AαcR,

and φα(x1, x2)T := Aα(x1, x2)T +bα where cR
1 , cR

2 , ρR

and cT
1 , cT

2 , ρT are given by Eq. (3) for the refer-
ence and template image, respectively. The basic idea
is to implicitly transform reference and template im-
ages into a normalized setting and than to optimize
with respect to shear. Note that the formula integrated
all three steps. T ◦ φα has the same center of grav-
ity and principal axes as R. The parameter α is cho-
sen, in order to minimize the distance between the
images.

2.6.2. Partial Optimization (Partial-Optimal
Approach). The α-optimal approach might be
too restrictive. Thus, one may also allow optimize
with respect to translation, rotation, and shearing,
so-called partial-optimal. Making use of a singu-
lar value decomposition of a matrix A in (4) we
have

A = Aβ,γ = D(β)
(

s1 0
0 s2

)
D(γ )

where s1 and s2 are obtained from the external esti-
mates. The eigenvalue decomposition of the covari-
ance matrix CovS (2) of an image S yields the rotation
matrix D(ρ) and the scaling matrix 
, a diagonal ma-
trix that contains the scalars s1 and s2. In our partial-
optimal approach we use these original scalings of a
section and only optimize with respect to the remain-
ing four parameters of an affine linear transformation
(here: β, γ, b1, b2). Thus we optimize the SSD in (4)
w.r.t. the rotation angles β, γ and the translation b1, b2

but use fixed values of s1 and s2. Therefore, the affine
linear map reads

φβ,γ,b(x) = Aβ,γ x + b.
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2.7. The Overall Affine Linear Registration

For the final registration of the image stack, the
data-based breakpoint ν0 := 241 is chosen (image
with the maximum number of non zero pixels). Let
Rν0 = Sν0 and Rν = Sν(Aνx + bν) otherwise, where
(Aν, bν) are computed from either the α-optimal, or the
partial-optimal approach,

(Aν±1, bν±1) = arg min{SSD[Sν, Sν±1; A, b] | A, b}

and we take the “+” sign for ν < ν0 and the “−” sign
for ν > ν0. Thus, 502 optimization problems for the rat
brain sample are solved. The computations were per-
formed on a Pentium III processor (1 GHz) equipped
with 4 GB RAM under Linux. The computation time
of 502 1024 × 1024 large images preprocessed as de-
scribed was 13.95 minutes for standard and 84.87 min-
utes for robust PAT. The shearing optimization lasted
49.8 minutes and optimization of all three parameters
takes 139.43 minutes after robust PAT was finished.

2.8. Elastic Registration

As described in the introduction histologic sections are
effected by local nonlinear deformations which need
to be reduced by the nonlinear approach elastic regis-
tration. The rheologic equation of state concatenates
forces of tensions and distortions or extensions that
can be determined experimentally. In most elastic mod-
els the embedded brain is assumed to behave at each
point in the same manner with respect to deformations.
Therefore, it is homogeneous with respect to material
features. The brain was sectioned within a fixed di-
rection, in this case from the superior to the inferior
margin in the frontal plane. Because the outer border,
i.e. cerebral cortex, consists of slightly other biological
material than the white matter and the ventricles, we
assume that material has more or less anisotropic fea-
tures, i.e. the deformation effects of forces to the brain
are depended from their direction.

In the case of the rat brain and the human forebrain
that are soaked with paraffin wax we assume a ho-
mogeneous and isotropic state within sectioning. An
inhomogeneous and anisotropic state within stretch-
ing the section in the warm water bath and the stain-
ing procedure should be kept in mind. Because we
do not know the features of the embedded material,
which is not a limiting factor for developing a gener-
alizable and nonparametric nonlinear registration ap-

proach, we assume a linear relation between strain-
tensor and stress-tensor. Let u(x) = (u1(x), u2(x))T

denote the displacement of a tissue particle located at
a position x = (x1, x2)T ∈ R2. The Cauchy-St. Venont
strain-tensor is denoted by V and the stress-tensor by

,

V : =
(
ε1,1 ε1,2
ε2,1 ε2,2

)
:= 1

2
(∇u + ∇uT),


 : =
(
σ1,1 σ1,2
σ2,1 σ2,2

)
. (5)

Exploiting the homogeneity of the tissue sections, the
strain- and stress tensor are simultaneously diagonal-
izable and can be rewritten in terms of an eigenvector
basis. Let the eigenvalues of V and 
 be denoted by ε j

and σ j , j = I, I I , respectively. Moreover, under the
homogeneity assumption, a linear model becomes(

εI
εI I

)
=

(
E −υE

−υE E

) (
σI
σII

)
(6)

with some parameters E, υ ≥ 0, which are known as
Young’s elasticity module and Poissons’s contraction
ration. Introducing the so-called Lamé-constants

μ := E

2(1 + υ)
and λ := Eυ

(1 + υ)(1 − υ)
, (7)

Eq. (6) can be rewritten in general coordinates,

σ j,k = 2με j,k + λ trace(V ) δ j,k

= μ(∂x j uk + ∂xk u j ) + λ div u δ j,k, j, k = 1, 2,

where δ j,k = 1, if j = k, and 0 otherwise. These
equations describe the inner forces in a linear model
of an elastic body. Let f denote an outer force-field.
From Eq. (8) the equilibrium equation f j = div 
 j :=
∂x1

σ j,1 + ∂x2
σ j,2, j = 1, 2 which balances inner and

outer forces, we obtain the Navier-Lamé-equations

μ�u1 + (λ + μ)∂x1
div u = f1,

μ�u2 + (λ + μ)∂x2
div u = f2.

A more general approach to image registration is
based on the minimization of the joint functional

J [u] = D[R, T ; u] + αS[u], (8)

where R, T : R2 → R denotes the two images to be
registered, D denotes an appropriate distance measure,
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e.g., the so-called sum of squared differences

D[R, T ; u] = 1

2

∫
R2

(T (x − u(x)) − R(x))2 dx, (9)

and S denotes a regularizer, e.g., the elastic potential

S[u] = 1

2

∫
R2

λ
(
∂x1

u1 + ∂x2
u2

)2 + μ
{
2
(
∂x1

u1

)2

+ 2
(
∂x2

u2

)2 + (
∂x2

u1 + ∂x1
u2

)2}
dx,

and α > 0 denotes a regularizing parameter
(cf., Fischer and Modersitzki, 2002). The basic
idea thus is to find a deformation of a template image
(T ) that simultaneously minimizes the difference
between the deformed template and the reference
image (R) and the deformation energy, respectively.
This approach enforces similarity of the images as
well as connectivity of the tissue. Note, in this notation
T (x − u(x)) might be viewed as the non-deformed
version of the template. Using the calculus of variation,
a minimizer of (8) is characterized by

− f (u) + A[u] = 0,

where

f (x, u(x)) = (T (x − u(x)) − R(x)) · ∇T (x − u(x)),

A[u] = αμ�u + α(λ + μ)∇ div u.

These are the Navier-Lamé equations with a particular
force-field which stem from the Gâteaux-derivative of
the distance measure (9).

An appropriate discretization of these equations fi-
nally leads to a fixed-point type equation for the un-
known deformation field, cf. Eq. (10),

A
(
u(k+1)

1 , u(k+1)
2

)
T = (

f1

(
u(k)

)
, f2

(
u(k)

))
T. (10)

2.9. Implementation

In principle, any method for solving a system of lin-
ear equations can be used to compute the solution of
Eq. (10). However, a discretization of u1 and u2 with
m × n points results in N = 2mn unknowns (e.g.
for 512 × 512 discretization points we end up with
N = 219 = 524288) and A becomes N × N . For a
standard LU -decomposition one needs to store O(N 2)
real numbers and approximately O(N 3) floating point
operations (see, e.g. Golub and van Loan, 1989). Thus,

memory and computational requirements afford a par-
ticular treatment.

The implementation of our parallel algorithm for
p processors can be divided into three parts (see
Modersitzki et al., 1999) for a detailed description of
the implementation on a 48 dual pentium cluster.

Let 
X1 and 
X2 refer to a spatial grid and 
U j =
u j ( 
X1, 
X2)T denote the values of the displacement field
on the spatial grid. In an initialization step we set the
iteration counter k = 0, 
U (k)

1 = 
U (k)
2 = 0. In the iter-

ation, we compute the deformed template T (k)(x) :=
T (x − u(k)(x)) on the actual grid by using a bilinear
interpolation scheme. Let (x1, x2) ∈ [1, m] × [1, n],
ξ j := x j − u j (x1, x2), d j ∈ N, j = 1, 2, such that
d j ≤ ξ j < d j + 1. Then,

T (k)(x1, x2) = T (d1, d2)(d1 + 1 − ξ1)(d2 + 1 − ξ2)

+ T (d1 + 1, d2)(ξ j − d1)(d2 + 1 − ξ2)

+ T (d1, d2 + 1)(d1 + 1 − ξ1)(ξ2 − d2)

+ T (d1 + 1, d2 + 1)(ξ1 − d1)(ξ2 − d2).

Using centered finite difference approximations for the
derivatives, the actual force field on the spatial grid can
be computed by


F (k)
1 (x1, x2) = (

T (k)(x1, x2) − R(x1, x2)
)

·T (k)(x1 + 1, x2) − T (k)(x1 − 1, x2)

2
,


F (k)
2 (x1, x2) = (

T (k)(x1, x2) − R(x1, x2)
)

·T (k)(x1, x2 + 1) − T (k)(x1, x2 − 1)

2
,

where T (k)(x) = 0 if (x1 − u(k)
1 (x), x2 − u(k)

2 (x) �
[1, m] × [1, n]) is not a grid point.

The linear system (10) is solved and computation
is terminated if one of the three following conditions
holds

‖u‖ � 1, ‖ f (k)‖ � 1, ‖R − T (k)‖ � ‖R − T ‖.

If we want to preserve and visualize histologic details
like the lamination pattern of the cerebral cortex images
of a minimal size of 512×512 pixels must be registered.
Therefore, Fischer and Modersitzki (1999, 2001) have
developed a fast solver based on the inverse Fast Fourier
Transform that was also implemented in parallel on a
high performance cluster (Böhme et al., 2002).



Image Registration of Sectioned Brains 19

Figure 7. Overview of the 3D-reconstructions of (a) the original non-registered image stack (b) of the robust principal axes transformation,

(c) of the shearing optimization and (d) optimization of translation, rotation and shearing. On the left side 3D-reconstructions without linear

smoothing and on the right linear smoothed 3D-reconstructions are shown.

3. Results

3.1. Affine Linear Registration of the Rat Brain

In Fig. 7, the 2D-projections of 3D-reconstructed rat
brain images are presented. The reconstructions are
plotted in a smoothed and a non-smoothed version, re-
spectively. All reconstructions depict the same view
point of the brain. The non-registered image stack
shows a blurred surface. The typical ellipsoid form of
the 3D-body of the rat brain looks like a tube. At the ros-
tral region small pieces of tissue lie somewhere in front
of the telencephalon. These pieces of tissue belong to
the olfactory bulb resp. accessory olfactory bulb. The

cerebellum can be guessed by the posterior third in the
reconstruction because there the surface seems to be
more rough.

After applying exclusive PAT registration, the cor-
rect proportionated 3D-body of the rat brain, its surface,
and macroscopic visible details like the longitudinal
cerebral fissure, the cerebral hemispheres and the cere-
bellum with its lobes and lobules are identifiable. The
small tissue sections of the olfactory bulb are aligned
to their correct locations by the PAT.

The same results as described visually with re-
spect to the 3D-reconstructions were found quanti-
tatively, too. The robust PAT method leads in both
examples of original and perturbed images to lower
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Figure 8. A region of interest within the longitudinal fissure of the

rat brain (Fig. 7) is shown here in order to demonstrate details of

the alignment. (a) PAT registration; (b) PAT registration plus shear-

ing optimization; (c) PAT registration plus translation, rotation and

shearing optimization. The surface of the 3D-reconstruction in (c) is

slightly smoother. This means that the optimization of three param-

eters leads to a better result.

differences and therefore to a better registration result
(Table 1).

Optimizing the translation after applying the robust
PAT registration leads to a minor refinement of the sur-
face of the brain reconstruction. The fact that a minor
refinement is reached after the α-optimal approach can
be seen more clearly after reconstructing a region of
interest (ROI) around the longitudinal cerebral fissure
(Fig. 8). The margin of the fissure is at some locations
smoother than at the exclusive PAT registrations indi-
cating that the adjacent images are better aligned.

The best quality of affine linear registration is de-
livered by the partial-optimal approach. Translation,
shearing and rotation features are optimized after ap-
plying the robust PAT. The result is obviously better
resp., the surface of the 3D reconstructed rat brain is
smoother than in the α-optimal approach. This can be
seen quite clearly in the 3D-reconstruction of the ROI
as shown in Fig. 8(c).

Additionally, the mean SSDs of all methods for a
sample of 21 adjacent images (330–350) of an embed-
ded size of 1024 × 1024 pixels were calculated. The
non-registered stack has a mean SSD of 36171. Robust
PAT leads to a decrease of 47% and the standard PAT
to 49% of the SSD. If shearing is optimized after ro-
bust PAT (55%, x̄ = 16236.84) or standard PAT (55%,
x̄ = 16239.95) has been applied a further decrease
was observed. The SSD of the robust PAT after rota-
tion and translation optimization is 52%. Therefore, the
shearing component contributes more to the deforma-
tion than rotation and translation within the affine lin-
ear registration step. The smallest SSD (59%) was cal-
culated for the robust partial-optimal approach where
translation, rotation and shearing have been optimized.

Different registration techniques lead in general to
completely different reconstructions. Thus, there is in
principal, no one-to-one correspondence between hor-
izontal and sagittal sections of the 3D-reconstructions
of the three different registrations. These visual impres-
sions as described above can be recognized in isopla-
nar projections of the 3D-reconstructions, too (Fig. 9).
Naturally, such virtual sections are only reasonable af-
ter registration and reconstruction. Therefore, the im-
age processing chain has to be considered as an ade-
quate constrain with resp. to the visualization of finer
morphologic structures at high resolutions in these iso-
planar sections. Such a fine structure can be seen in the
horizontal isoplane in the brainstem (Fig. 10: e.g. abdu-
cence nucleus, trigeminal nucleus). The hippocampus
formation and even the molecular layer of the cerebellar
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Figure 9. Isoplanar sections through 3D-reconstructions of three different registrations are presented here in the horizontal (left) and sagittal

plane (right) for (a) PAT registration; (b) PAT registration plus shearing optimization; (c) PAT registration plus translation, rotation and shearing

optimization.

cortex can be seen clearly. The white matter boarder
of the cerebral cortex and the boarder of the molecular
layer to the layer of the cerebellum can be differentiated
as well. As mentioned before, it must be clear that
the isoplanar sections of the exclusive PAT, α-optimal
and partial-optimal approaches cannot be compared
directly with respect to certain details because the opti-

mization of shearing alone or shearing in combination
with translation and rotation effect the 3D-geometry
of the brain and consequently the positioning of small
structures (Fig. 9). However, to make our results com-
parable, the most similar sections w.r.t. anatomic fea-
tures were selected (original data: horizontal 299, sagit-
tal 180; PAT: horizontal 303, sagittal 180; α-optimal:
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Figure 10. Isoplanar sections through 3D-reconstructions visualized with a colored look-up-map. The black line in the panel above indicates

the view on a section of the reconstruction below. This section contains the data of one original image.

horizontal 303, sagittal 180; partial-optimal: horizon-
tal 299, sagittal 165). Here, the original stacked im-
ages and the PAT images share the same section num-
ber and can be compared directly. Note, the original
non-registered stacked images cannot be used. An iso-
planar section in the PAT image looks more like the
isoplanar section in the α-optimal result than in the
partial-optimal reconstructed result. However, we tried
to choose isoplanar sections which are as similar as
possible.

At last the 3D-reconstruction of a 512 × 512 pixels
large resampled stack of images is reproduced in Fig.
11. In the same figure, we have also reconstructed the
same stack of images at original resolution of 6.35
μm edge length of each pixel. The first rostral sec-
tions of the olfactory bulb are misregistered because
we applied a smaller opening filter (5 × 5) in order
to preserve finer details at such a high resolution. De-
spite the fact that we applied the robust PAT registra-
tion strategy, the sections are not aligned optimally.
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Figure 11. The best quality of registration was obtained by the partial-optimal approach (upper panel: registration and reconstruction of low

resolution images). Therefore, the whole stack of images was registered partial-optimal at the original relative large resolution. The resulting

reconstruction is shown in the lower panel.

This is because small preserved artifacts around fore-
ground objects which do not pertain to the class of
artifacts posses only small masses in comparison to
other structures. Hence, they gain a stronger influence
on the center of mass and the orientation of the princi-
pal axes. Nevertheless, those sections which possesses
large masses show an optimal affine alignment result.
Interestingly, one can recognize the granule cell layer of
the main olfactory bulb which cannot be detected in the
reconstruction of the image of lower resolution (same
Fig. 11).

3.2. Elastic Registration of the Rat Brain

The SSD of the preregistered rat brain images decreases
from 281373 (59%) to 229576 (67%) in comparison
with the nonregistered images. After 10 steps of elastic
registration were performed we observed the largest in-
crease of SSD. From 20 to 40 further registration steps
the SSDs diminishes to 204241, i.e. 70%. The elas-
tic registration of preprocessed but not preregistered
images yields to a decrease after 40 steps of the SSD
to 422969 (38%), only. This means that affine linear
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Figure 12. The 3D-reconstructions of the rat brain after affine linear registration (LR) and affine linear with subsequent elastic registration (ER)

after 10 to 50 registration steps. Two different projections are shown here: from above (left column) and oblique from the rostral perspective

(right column). The smoothness of the surface of the reconstructed brain is correlated with the number of registration steps.
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preregistration is essential with respect to quality,
quantity and computing time optimization. The 3D-
reconstructed rat brain is shown in Fig. 12 after 10
to 40 elastic registration steps and after affine linear
registration, only. In the following these results have
been applied to the images of the histologic sections
of the human forebrain. For the purpose of visualiz-
ing some subcortical structures which are investigated
often in neuroscience two horizontal sections through
the 3D-reconstructed volume are presented in Fig. 13.
Especially, the internal capsule, substantia nigra, sub-
thalamic nucleus and the subiculum can be recognized
in the reconstruction.

3.3. Registration of the human brain

The paraffine embedded human brain was sectioned re-
sulting in 6214 images. Before sectioning, an episcopic
image of the surface of the wax block was produced
(Fig. 15(b)). 1.64% (102) of these sections were lost
within tissue processing. 450 of the 6112 sections were
resampled and registered using the elastic registration
method. The registration was performed on a high per-
formance computer cluster (Fig. 14(d)). The run time of
the sequential version of the elastic registration of two
512 × 512 pixel images is about 100 minutes whereby
the parallel computation on the 48 dual pentium node
cluster lasts 188 seconds. This means that the parallel
implementation on the high performance cluster needs
for 100 images (512 × 512 pixel) about 5.22 hours.
In comparison to the serial version of the elastic
registration algorithm this is a speed up of 96.9%.

The elastic registration of the same 21 images
(1024 × 1024 of the rat brain that were used for
computing-time measurements within the affine linear
approach lasted in average 3.34 hours on a 1 GHz Pen-
tium III computer. If these images were preprocessed
only but not preregistered by the affine linear approach
the computing-time increases up to 7.87 hours in
average.

Comparing the (linearly corrected) template 117
with the reference image 116 shows a difference of
||T − R|| ≈ 10361 in the Frobenius norm. Using our
elastic matching algorithm, we are able to reduce the
difference to ||T200−R|| ≈ 3123, which is ca. 30.1% of
the initial difference. Here, we performed 200 iteration
steps until 30.1% were reached.

The four different perspectives to 3D-
reconstructions of these sections which are lying

Figure 13. Within two horizontal planes through the reconstructed

brain volume some structures of interest can be recognized now

which are not visible without registration, i.e. ic: internal capsule,

CPu: caudate putamen complex, SNR: substantia nigra, STh: sub-

thalamic nucleus, DG: dentate gyrus, S: subiculum, CA2: field CA2

of hippocampus, LEnt: lateral enthorinal cortex. (a) horizontal sec-

tion on the level of the olfactory bulb. (b) horizontal section below

the olfactory bulb. (c) Smoothed 3D-reconstruction of the elastic reg-

istered sections after 40 registration steps. The latter reconstruction

is shown from the same viewpoint like horizontal sections in (a) and

(b). The arrows are pointing to dents in the surface of the brain. They

can be observed within intramodal registration if loss of tissue inside

the biologic object occur.

within the occipital lobes are shown in (Fig. 18). In
these 3D-reconstructions the sulcus calcarinus can
be detected easily. The stripe of Gennari, i.e. lamina
IVb, is visualized in a horizontal isoplanar section
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Figure 14. The sliding microtome with the scanner camera that have been used for digitizing each paraffin wax block surface before the next

section have been produced (a), a deformed 20 μm section on the knife of a microtome (b), a large histologic section on the high resolution

transparent flat bed scanner (c), the high performance computer cluster with 48 dual PII processors (d).

through the 3d-reconstruction (Fig. 19). The neuron
poor lamina IVb can be seen better in area 17 of the
right occipital lobe. Gyral structures that have been

sectioned tangentially and are not connected to the
tissue object with the largest area of all tissue objects in
an image were matched in correct topographic relation.
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Figure 15. (a) The brain that have been processed was evaluated by

an MRI-scanner (MRI-modality). (b) Paraffin wax surfaces were dig-

itized before each sectioning process (episcopic modality). (c) High

resolution flat bed scan images were produced from each histologic

section of the investigated brain (FBS modality).

Finally, we have used the force fields calculated
by the elastic registration algorithm in order to de-
termine in four consecutive sections (116 to 119)
the exact centers of gravitation of each neuron
(Fig. 20). The gravitation centers have been de-
tected before by a image analytical procedure de-
scribed by Schmitt et al. (2005). The registration
of the gravitation centers of the detected cells and

reconstruction is shown in Fig. 21. The cortex, lam-
ina I and II as well as the white matter border
can be detected easily in the registered object data.

4. Discussion

4.1. The Registration Chain: From Affine to Elastic

The result of the proposed approach of robust affine
linear registration is a reliable alignment of histo-
logic sections of a whole brain of a rat that shows
in 3D-reconstructions structures which were not vis-
ible before registration. The robustness of the algo-
rithm that was implemented is an outstanding fea-
ture in regard to the alignment of histologic mate-
rial. Because it has a very low sensitivity to noise
we will use it for a fast pre-registration. The pre-
aligned images are a promising starting point for a
consecutive nonlinear registration which will spend
less computing time than without pre-registration
because the convergence will be reached sooner.

4.2. The Affine Linear Approaches

We have presented different approaches to affine lin-
ear registration. Because the standard PAT of histologic
images leads to unwanted trends in the registration re-
sult, we must recommend our robust version. Prior
studies describe other algorithms which were devel-
oped for rigid transformations (Kuglin and Hines,
1975; de Castro and Morandi, 1987; Hibbard et al.,
1992; Zhao et al., 1993; Alexander et al., 1997). How-
ever, these approaches are not as flexible as the tech-
nique investigated here with respect to subsequent
optimizations. These optimizations may concern the
translation (2 parameters), the rotation (1 parameter)
and the shearing (1 parameter) as well as the scal-
ing (2 parameter). Applying optimization of the first
three components (translation, rotation, shear) leads
to smoother surfaces in the 3D-reconstructions and to
the smallest SSD. Finer details, convexities and con-
cavities are preserved. Recently, Arsigny et al. (2005)
developed a polyrigid and polyaffine transformation
that was applied sucessfully to histologic sections.

As explicated before, affine linear registration of
foreground structures in stacks of images are aligned
in reference to their centroids. These centroids are spa-
tial points of convergence of the foreground structures.
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Figure 16. Top: The size of the foreground (ordinate) within each image of the whole series of digitizes histologic sections (abscissa) of the

human forebrain is presented here. Below: In this diagram the smoothed distribution of foreground areas is shown. In the left part of this diagram

section size increases slower (frontal lobe) whereby on the right side the decrease of section size is stronger within the parietal and occipital

lobe.

Since no external references (e.g. fiducial markers)
were used in this kind of registration it is more
likely that sections through a curved cylinder con-
verge to a tube like object after reconstruction (Fig. 5).

Scaling optimization was not considered here be-
cause all images are digitized at the same magnifi-
cation and resolution. Moreover, deformations effect-
ing the scaling or larger local volume bulges of the
brain do not appear. However, scaling have to be kept
in mind because single sections may be compressed
also and therefore need to be registered in respect
of scaling. Since now, we are not able to recom-

mend an affine linear method or a nonlinear method
to align distortions due to compression or dilation.

These observations suggest that, compared to
other algorithms, e.g. chamfer matching (You, 1995;
Borgefors, 1988), fiducial markers (Ongaro et al.,
1991; Maurer et al., 1997; Kremser et al., 1997;
de Munck et al., 1998; West et al., 2001) and other
implementations (Ozturk, 2002; Woods, 2002), our
robust rigid registration combined with affine linear
optimization of translation, rotation and shearing lead
to an optimal starting point for a succeeding nonlinear
registration technique.
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Figure 17. A template image (T) of a section (above) and a reference image (R) of a consecutive section (middle) are shown. The foreground

objects, i.e. views of the occipital lobes) in the images do not match exactly (below).

Ourselin and coauthors (Ourselin et al., 2001b)
investigated registration robustness of comparable
material as done here. They have shown by a new
sophisticated approach the block matching algorithm
applied to digitized histologic images that have to
be registered and using the correlation coefficient
as an appropriate similarity measure satisfying re-
constructions can be obtained. They used a robust
estimate, the convex M-estimator or L1-estimator
that is suitable for point matching to generate reliable
results. So far, we do not have implemented this tech-
nique which is of interest for comparison of robustness
issues.

As elaborated by Schormann and Zilles (1997) and
Schormann et al. (1997) minute shearing results in
strong rotational errors if the shapes are approximately
square, but scaling errors dominate in cases with ex-

tensive shearing can be minimized by combine the
robust PAT approach introduced here by consecu-
tive affine optimizations. Small misalignments of ad-
jacent sections can be corrected much faster by an
elastic method after preregistration with the robust
partial-optimal technique than direct by the elastic ap-
proach because the extension of mismatch was previ-
ously reduced. Furthermore, affine preregistration be-
fore elastic registration may have a direct qualitative
effect of preserving the morphology of the histologic
structures. If the global deformation components like
translation, rotation and shearing are registered pri-
mary local by a nonlinear approach local deforma-
tions can be introduced into the resulting images.

We must emphasize that the partial-optimal ap-
proach is a necessary initial registration proce-
dure. However, an affine linear model is not
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Figure 18. 3D-reconstructions of the elastic registered images 100 to 199. Here, four different views to the reconstructed stack of images are

presented.

sufficient to register images that contain non-
linear deformations. Therefore, it is indispens-
able to align images of serial histologic sec-
tions in a multiresolution-multiregistration frame-
work for a best possible correction of deformations.

4.3. Elastic Registration and Megapixel Images

After pre-alignment the images still contain deforma-
tions (Fig. 9(c)) that are local and nonlinear. Such
local deformations are getting more important if im-
ages of histologic sections with high resolution up to
a coarse cellular presentation are registered. So far we
are not able to determine if the remaining deformations
are attributed to small affine linear distortions. Never-
theless, the affine linear pre-alignment have reached
an optimum. Therefore, a local nonlinear technique
like elastic registration is an inevitable procedure for
a consequent final alignment of histologic images.

The theoretical framework of elastic registration has
been published first 20 years ago by (Broit, 1981;

Bajcsy, 1982; Bajcsy, 1983; Bajcsy and Kovačı́č,
1989). This kind of local and nonlinear intensity
based registration was applied to histologic sections
(Schormann, 1996; Schormann and Zilles, 1998) in-
tramodal (MRI to MRI) and intermodal (histologic to
MRI). Some subsequent works about nonlinear regis-
tration of inter- and intramodal elastic alignment where
histologic image data were involved have been pub-
lished by Mega et al. (1997), Cohen et al. (1998),
Jacobs et al. (1999), Bardinet et al. (2001), Toga and
Thompson (2001) and Ourselin et al. (2001a,b). How-
ever, in these works no high resolution image data
are used and no computing optimizations were real-
ized. Therefore, we have developed a parallel imple-
mentation of a fast solver of the equation systems to
maintain the force fields and the results of our non-
linear approach are presented here for the first time.

In comparison to other elasticity based registrations
of MRI, PET or other material (Davatzikos, 1997; Ash-
burner et al., 2000; Hayakawa et al., 2000; Iosifescu
et al., 1997; Ferrant et al., 2001; Guimond et al.,
2001; Christensen and Johnson, 2001; Christensen
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Figure 19. On top the perspective on the 3D-reconstruction form above is displayed. A virtual section through the 3D-reconstruction has been

performed. In the isoplanar view somebody can detect the stripe of Gennari (arrows) within area 17 and the calcanear sulus (black lines).

et al., 1997; du Bois d’Aische et al., 2005; Auer
et al., 2005) we are working with very large im-
ages of up to 11000 × 7000 (= 77 × 106) pixels.
The resulting system of linear equations has a size of
1.40612164 × 1032 (= 4 × n4). Therefore, Fischer
and Modersitzki (1999, 2001) developed a superfast
direct solution scheme (full multigrid), based on the
Fast Fourier Transformation. In addition, this solution
scheme has been implemented on a high performance
computer cluster. An alternative would be solving
the equation system by a parallelized additive oper-
ator splitting (AOS) technique or parallelized multi-

grid computing (Thompson and Ferziger, 1989; Vatsa
and Wedan, 1990; Schieweck, 1993; Webster, 1994).

4.4. Nonlinear Registration Alternatives to the
Elastic Approach

An alternative to the elastic approach would be
thin plate splines with landmarks (Bookstein, 1984,
1989; Davatzikos and Prince, 1994; Davatzikos,
1997; Maurer et al., 1997; Rangarajan et al., 1997;
Baheerathan et al., 1998; Cohen et al., 1998; Gold et al.,
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Figure 20. Within section 115 to 119 each cell was detected. Each 40th cell has been plotted on the left side of this plate. The corresponding

FBS-image is shown on the right. Section 118 was slightly thinner. Therefore, we found fewer cells within the section space.

1998; Kostelec et al., 1998; Rangarajan et al., 1999;
Joshi and Miller, 2000; Chui et al., 2001; Johnson and
Christensen, 2001; Rohr et al., 2001), trilinear Bézier
splines (B-splines) (Rueckert et al., 1999; Otte, 2001),
nonlinear registration via genetic algorithms (Rouet
et al., 2000) or deformable organisms (autonomous
agents) derived from artificial life computing concepts
(Hamilton et al., 2001). However, landmarks have
to be determined exactly which could be a limiting
factor for very complex series of images (Collins
et al., 1995; Likar and Pernus, 1999; MacDonald et al.,
2000). Other non-linear methods like optical flow
(Horn and Schunck, 1981; Hellier et al., 2001) and
fluid dynamic models (Christensen, 1994; Christensen
et al., 1997; Lester and Arridge, 1999; Christensen
and Johnson, 2001) which are applied for matching
images of different modalities or between different

individuals have to many degrees of freedom. This
could lead to problems at those parts of images were
loss of tissue or larger cracks and crinkles are present.
Furthermore, the physical effects which introduce
deformations consists of extension (dilatation) and
tension (contraction) forces and not of movement
artifacts (optical flow) or applying a registration task
to images which are derived from different physical
devices or which should be registered to different
individuals.

4.5. Similarity Measures

In our approach of elastic registration only one
distance measure was applied. According to Penney
et al. (1998), Studholme et al. (1999), Holden et al.
(2000) and Zhu (2002) other measures of similarity
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Figure 21. A region of interest of the object data was aligned using the result of the elastic registration of FBS-images 116 to 119. Laminar

details and the white matter border can be detected in the plots of each gravitation center of the cells. On the right we have plotted the 3D-particle

space of the aligned object data.
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can be used too. Therefore, we will investigate further
similarity measures.

4.6. Drawbacks

Rohlfing and Maurer (2001) pointed out that the vol-
ume of contrast-enhancing structures are decrease af-
ter elastic registration. This effect can be reduced by
an incompressibility constraint approach based on the
Jacobian determinant of the deformation that can be
computed rapidly. Such a constrained elastic registra-
tion have to be tested on our image material. If this
approach would preserve fine contrast details of the
laminar structure then we would be able to analyze the
lamination pattern of the cortex in three dimensions.

Since now, the images of the histologic sections
were not registered bimodaly to a reference data set
that can be obtained from MRI. A further approach
was published by Gefen et al. (2003) who developed
registration of a rat brain to internal and external sur-
faces serving as guides or surface references. An in-
trasubject reference of the rat brain used here is not
available. Nevertheless, the intramodal elastic regis-
tration decreases the SSD and increases the quality of
the reconstructed morphology. The arrows in Fig. 13
are pointing to dents of the rat brain surface which
do not occur normally. If sections with some loss of
tissue inside the brain are registered the image struc-
tures can be pulled more and more inside the volume
in order to minimize the SSD. This can be prevented
by a bimodal registration of the histologic data set to a
prehistologic MRI-dataset of the same biologic object.

4.7. Other Applications

Nonlinear registration schemes (elastic solid, fluid vis-
cous, mutual information, optical flow) are the scaf-
folding for co-registration and multimodal registration
strategies that are used for atlas development (Thur-
fjell et al., 1995; Toga et al., 1995; Nowinski et al.,
1997; McInerney and Roberts, 1998; Juan et al., 2000;
Nowinski and Thirunavuukarasuu, 2001), computer
aided surgery (Maurer et al., 1998a,b,c; Woods et al.,
1999; Jannin et al., 2000; Rohlfing et al., 2000; Murphy
et al., 2001; Mutic et al., 2001; Watanabe et al., 2001;
Sabbah et al., 2002) and structure-function-data cor-
relation investigations (Mega et al., 1997; Viergever
et al., 1997). Multimodal registrations deliver objec-
tive approaches that enable easy and intuitive image

registration. This can be of great help for the physician
who arrive at more optimal diagnoses and better treat-
ment decisions. Beside the development of atlases for
surgery tasks nonlinear registration, in particular fluid
models with more degrees of freedom, is essential for
matching single subject data sets to group data sets for
evaluation and comparison of macroscopic brain simi-
larities as well as differences (Santori and Toga, 1993).

4.8. AIR

The registration software package AIR 5.06
(Woods et al., 1998a,b) (http://128.97.134.164/

AIR5/index.html) is able to perform affine linear
and nonlinear registrations as well as co-registrations
(Kiebel et al., 1997). However, as already shown
by Hsu et al. (2001), registration results can be
enhanced by other methods and modifications.

4.9. Closing Words

Elastic registration of high resolution images of serial
histologic sections of the human brain is quantitatively
accurate and provides an registered stack of images
that can be directly reconstructed and rendered. The re-
constructions, once completed, offers insights into the
spatial arrangement of morphologic entities like dif-
ferent cortical regions, laminae, subcortical nuclei and
fiber tracts which are the origin for exact 3D cellular
object reconstructions as shown exemplary. Therefore,
we are confident to apply this introduced, modified
and successful tested registration framework from
the preprocessing over affine and elastic alignment to
3D-reconstruction and rendering to the whole high
resolution data set of over 6000 sections of a human
brain.
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