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Abstract

The segmentation of structures of complex cytological and histological images is a necessary intermediate step for image analysis that give
rise to binary images. In many cases these binary images can be rather far away from a subsequent object specific quantification because
biological structures digitized by optoelectronic devices may situated close together so that they appear as one fused object in the projective
image. Such fusions of objects may become complex so that large clusters of biological structures emerge. To quantify individual objects of a
cluster they must be separated. The shape, size and intensity variation of cells in complex organs like the brain may breed planar configurations
that can be splitted only inadequate by common techniques, e.g., watershed separation or basic morphological processing of images.

Considering iteratively object contours suitable features of saliency can be accumulated that give rise to markers of singular objects. Such
significant markers may drive a separation process more effective than common approaches. The determination of markers by an iterative
method should be scale, translation and rotation invariant and robust with regard to noise due to the variability of biological specimen.

We realize a technique that splits cell clumps consisting of different cell sizes and shapes into meaningful parts. The multiscale method
applied here is based on the analysis of the contour shape and the object area by iterative voting using oriented kernels. These cone-shaped
kernels vote iteratively for the local center of mass of the components of an aggregation. The voting is performed along the gradient of the
distance transformation of the binarized image of aggregates. Iterative voting is initialized by voting along the gradient direction where at each
iteration the voting direction and shape of the kernel is refined, resp. the kernel topography is refined and reoriented iteratively. It turned out
that the kernel topography is unique because it votes for the most likely set of grid points where the gravity center of an individual cluster
component may be located. Furthermore, a new procedure is realized to use the local intensities of aggregations for kernel voting. The last
voted iteration provides gravitation centers, resp. centers of mass of the clumped cells. These are extracted and used as markers to determine
individual cell boundaries by a marker based watershed postprocessing.

The subject of this paper is to highlight the basic algorithm of iterative kernel voting and expanding it to process intensities within clusters
as well as contour information. The approach is applied to synthetic images that were modified systematically with regard to object topology.
Natural aggregates of cells at the light microscopic level and cell clusters derived from high resolution flat bed scanning were splitted. In
addition to these examples images from a benchmark databases were investigated. The splittings generated by the iterative voting approach
were compared with expected splittings of test persons and with results of the watershed method. Especially the gray level based iterative
voting method provides superior results for cell cluster separation in comparison to the watershed procedure.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Digital cell measurements in diascopic micrographs of
stained cells in histological sections are complex. Complexities
arise as a result of nonuniform staining, local cell distributions
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with different degrees of overlap and variability of their size and
shape [1]. The section thickness leads to considerable differ-
ences of gray level or color distributions within cells. Thicker
sections of 10 to 20 �m give rise to almost dark stained neurons
whereby thin sections of about 5 �m yields a pale nucleus, a
dark nucleolus and perikaryon. Many areas within the brain of
vertebrates exhibit dense neuron distributions which even per-
sist in thin sections where partial or total overlaps of structures
in consequence of optical projection appear. Likewise optical
fusion appears if cells are juxtaposed very closely like the small
granular cells of the cerebellum or those in the dentate gyrus.

In summary, micrographs of stained histological sections of
the brain contain with a high probability [2] overlaps of struc-
tures due to their distribution and projection of a 3D physical
structure to a 2D-image.

These overlaps are reduced in confocal laser scanning mi-
croscopy (CLSM) [3,4]. However, for long term measurements
of large areas of histological sections, for instance serial sec-
tions of brains, CLSM is inapplicable and motorized video mi-
croscopy [5] or high resolution transparent flat bed scanning
[6] need to be performed.

Cytological as well as histological analysis of cell parame-
ters [7–12] assume that the objects, i.e. cell bodies and/or cell
nuclei, to be measured are not connected. Particularly reliable
automatic processing of cytological and histological digital im-
ages is demanded for clinical routine purposes as well as for
basic science. Naive methods like conditioned and scale space
based erosion [13] result in an unsatisfying splitting if objects
are juxtaposed very closely. Even, sophisticated procedures like
watershed segmentation of heavily clustered cells with differ-
ent shape and size may fail [14–24].

1.1. Review of previous work

Since many years [25–33] much effort has been spent to
decompose such overlaps of cells because successful and ro-
bust splitting is the key for automation [34]. However, com-
plex overlaps of hundreds or thousands of structures in images
where the area of the foreground is larger than the background
(Fig. 9g) the decomposition problem becomes complex. Auto-
matic morphometry [35] of complex cell distributions in his-
tological sections of biologic material becomes a challenging
task in combination with registration of serial sections [36] be-
cause complete cell atlases of organs especially brains can be
generated.

The problem of touching objects is propagated by image an-
alytic processes followed by global segmentation done by stan-
dard methods [37–42] that produce bilevel images that contain
sufficient foreground information for further cell-object specific
processing.

The structural analysis of cytological images is performed
often by means of morphological filters [43–46] because of
their shape- rather than frequency-oriented operations [47].
Such nonlinear approaches are well suited for shape descrip-
tion [48] and decomposition [49,50]. The concept of mor-
phological operations have been extended to multiscale shape

representations by Salembier and Kunt [51] and Goutsias and
Heijmans [52]. Applying multiscale morphological processing
(MMP) [53] an image containing fused regions that have to be
partitioned is decomposed into size-specific scales, each carry-
ing markers representing disjoint regions. The detected mark-
ers are used to reconstruct successively original shapes without
fusing them again. This kind of morphology based separation
can be adapted to different shapes of aggregated particles as
shown by Talbot and Appleton [54] and Metzler et al. [46]. Ag-
gregates that consists of particles of certain sizes can be seg-
mented by morphological approaches although the shape and
size of cells in biological specimens may vary considerably.

Aggregates may appear as two touching cells or large clusters
with many holes, i.e., connected regions of background within
an aggregate. For such complex clusters contour based algo-
rithms are used. Mostly, these algorithms determine centroids
of decomposed particles which are used thereafter for a precise
gray scale based segmentation by the watershed method or re-
gion growing. Contour based algorithms determine dominant
points, i.e., concavities and convexities of the contour and test
which cut path or split path of opposite dominant points turns
out to minimize a cost function. Further methods aim to sep-
arate aggregates by applying active contours and level sets. A
comprehensive overview of recent literature concerning these
families of aggregate-particle-problems and algorithms is given
below:

• Morphology based procedures [14,18,19,55–59];
• contour based techniques [54,60–69];
• active contour based methods [35,70,71];
• graph theoretic approaches [72,73];
• parametric fitting algorithms [54,74–76] and
• level set approach [74,77].

1.2. Voting radial symmetries on clustered contours

For the recognition of single cells of a cell cluster the salient
attributes are symmetry, continuity, and closure. Saliency is a
central perceptual cue that occurs at different resolutions. Ad-
ditionally, to the projective problems (incomplete information)
mentioned above detection of these attributes is often hindered
by noise and artifacts. Among these attributes, it is well known
that symmetry is a preattentive process [78] that facilitates
recognition, scene representation, reconstruction and separation
of disjoint entities. Bilateral symmetry is given if the object is
invariant under a reflection of a line (axis of symmetry) passing
through the centroid of the object. An object is said to possess
rotational symmetry of order n if it is invariant under rotations
of 2�/n radians about its center of mass, whereby central sym-
metry is a special case of rotational symmetry with n = 2. An
object is said to possess radial symmetry if it has bilateral and
rotational symmetry (Fig. 1). Most symmetries of cells in the
central nervous system are not perfect symmetries. Therefore,
we are using radial symmetries not in terms of strict symme-
tries rather than allow deviations from the ideal. The center
of mass in biological cells is considered as a basic perceptual
event that supports separation of clustered cells.
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Fig. 1. Examples of different types of symmetries. (a) Rotational symmetry of
order 3, (b) quadrilateral symmetries with dashed lines as axes, (c) bilateral
symmetry, and (d) radial symmetry.

The complexities mentioned above are addressed through a
special class of iterative voting, which is kernel-based, and its
topography favors radial symmetries. It is robust with respect to
variation in size and intensity, and delineates overlapped com-
partments. Using the concept of radial symmetries inference of
the center of mass from incomplete boundaries of single cells
as they occur in profiles of overlapping cells is realized by vot-
ing an evolving kernel. Perceptual grouping performed through
the refinement of spatially tuned voting kernels leads to infor-
mation of disjoint events.

Radial symmetries represent a superset of circular symme-
tries whereby the bulk of previous research has been limited to
the latter class [79–83]. The techniques in circular symmetries
are

• point operations leading to intensity outputs,
• clustering based on parametrized shape model or voting and
• iterative techniques.

The point operations use image gradients and orientations to
infer the center of mass [84–86]. Spatial voting and the concept
of summing certain parameters in an accumulator space has
been studied at least four decades [63]. Hough introduced the
notion of parametric clustering in terms of well-defined geome-
try of objects which possess regular shapes (circles or ellipses)
[87] which was later extended to the generalized Hough trans-
form. These techniques produce points of convergence corre-
sponding to the parametric models of well-known geometries.
These distributions are merged and model parameters are re-
fined. The nonparametric clustering techniques operate along
the direction of gradients to search for line- or area-based ra-
dial symmetry. The line-based search is known as spoke filter.
The frequency of occurrence of points normal to the edge di-
rection are accumulated. The area-based voting cluster votes
in a small neighborhood along the gradient direction. The wa-
tershed transform is one example and a further the regularized
centroid transform (RCT) which iteratively transport boundary
points to the local centers of mass [88–90]. To obtain robust
results with regard to noise the RCT regularizes the solution to
the centroid transform to eliminate inherent singularities.

Principally, voting operates on the notion of continuity and
proximity at different scales, e.g., points, lines, convex objects.
Yang and Parvin [91] have demonstrated that a series of ker-
nels that vote iteratively for the likelihood of the center of mass
exhibit disjoint centers of masses in images containing cell

clusters. Generally, this approach is comprised by the curve
evolution techniques [92]. Iterative voting turns out to retain
sufficient noise immunity which is important with regard to
noisy microscopic cell images. The iterative approach refines
the center of mass at each iteration until it converges to a focal
response. The applied kernels are cone-shaped and controlled
by parameters to target geometric features. The voting kernels
are applied within the gradient direction. At each iteration and
location on the contour the voting kernel is aligned along the
maximum response of the voting space. Additionally, the shape
of the kernel is refined and focused within the iterative process.
We extend the iterative voting kernel approach to gray level
images of cell clusters to combine contour based decomposi-
tion of a binary image with local intensity distributions of the
corresponding gray level image.

This paper outlines the complete methodology of implement-
ing the radial symmetry technique by means of the iterative
voting kernel approach. Several problems that arose within test-
ing the modified method at test images of differing topologi-
cal features were solved. Virtues and limitations of the radial
symmetry decomposition (RSD) technique are explicated and
compared with the standard approach of watershed based de-
composition (WSD). In this paper promising results of apply-
ing the method to complex cell cluster derived with different
digitization techniques like bright field microscopy and high
resolution transparent flat bed scanning [6] are presented.

2. Material and methods

For the realization, testing and modification of the RSD we
use 3 families of images: synthetic images (arte) (Fig. 8), light
microscopic images of cell clusters (cells) [5] and high reso-
lution transparent flat bed scanned images [6] of histological
sections of mouse brains stained with the modified method of
Gallyas (scan) [5,93] (Fig. 9).

Each digital image f is a function that maps discrete coordi-
nates to a finite range of a matrix of the size m × n leading to
an image I =(fi,j )

m,n
i,j=1. The image I possesses either gray val-

ues or levels fi,j ∈ {0, . . . , 255} denoted as I(g) or two-levels,
resp. binary fi,j ∈ {0, 1} that is denoted by I(b). A certain pixel
in the image I is denoted by x. More generally, binary I(b) and
gray level images I(g) are defined by their ranges B and G and
the binary image is described by its generating function:

b ∈ B = {0, 1} with |B| = B = 21, (1)

g ∈ G = {0, 1, . . . , G − 1} with |G| = G = 28, (2)

X = {(i, j); i ∈ {1, . . . , m}, j ∈ {1, . . . , n}}, (3)

f : X → B with fi,j ∈ B. (4)

Gray level images were segmented by the global segmenta-
tion method of Otsu [94] followed by an opening and closing
done with a symmetric structure element to remove overseg-
mented small regions, resp. fill undersegmented small holes.
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Fig. 2. Kernel topography. Four examples of evolving kernels for the detection of radial symmetries. Dmax = 35. (a) �= 90, (b) �= 80, (c) �= 60, (d) �= 50.

Binarization gives rise to connected components due to jux-
taposed objects of interest. Therefore, images are divided in
foreground and background. We define the sets X1 ⊆ I(b) and
X0 ⊆ I(b) with

X1 = {(i, j) ∈ X; fi,j = 1} → foreground, (5)

X0 = {(i, j) ∈ X; fi,j = 0} → background. (6)

Now we state X1 ∪ X0 = X. The foreground is the union of
connected components X1 = ⋃

iX
1
i . The subset X1

i ⊆ X1 is a
connected component or object if the points x ∈ X of the im-
age f are neighbored within a 8-connectedness of an euclidean
metric and that they can be labeled commonly by a certain at-
tribute.

Connected components can be decomposed by the conven-
tional watershed transformation [95,96] that is a matter of com-
mon knowledge. Therefore, the watershed segmentation is not
explained algorithmically. We apply the WSD to compare with
the approaches developed here. Since there exist four basic pre-
processing steps:

1. directly smoothing the gray level image,
2. distance transformation of a binary segmented image,
3. marker based WSD,
4. internal and external regions approach for applying WSD,

the distance transformation of binary segmented images is used.
Finally, the distance transformed images are smoothed by a 5×5
median filter. In the results section the WSD outcomes will be
presented first followed by the results of the new techniques.

2.1. Expected decomposition

The expected decompositions (EXD) are considered as the
ground truth. They have been generated by human subjects to
obtain a set of splittings for comparison with the algorithm re-
sults. These splittings are made on principles of Gestalt-theory
and perceptive psychology which are broad areas of research
in cognitive science where the visual perception and cognition
of components of objects are analyzed [97–103]. In cognitive
psychology it has been suggested by Attneave [78] that infor-
mation along visual contours is concentrated in regions of high
magnitude of curvature, rather than being distributed uniformly
along the contour. Attneave [78] indicates that most shape in-
formation is contained in the corners (high curvature points),
which are able to characterize the contour. Recently, this has
been investigated more precisely by Feldman and Singh [97]

Fig. 3. Reorientation of the kernel at two iterations. (a) In the first iteration
the angular range � is larger than in (b) the second iteration. Q is a point
of A derived from the maximum of the voting area A, resp. the maximum
of the voting kernel with regard to P determined at the first iteration. In the
second iteration the normal vector, resp. voting direction � is reoriented to
Q detected in the last iteration.

in regard to information theory [104,105]. Gestalt theory has
shown (based on the Gestalt principles of human perception:
proximity, similarity, continuity, closure) that splitting may take
advantage of the fact that two sharp inflections must be aligned
before clusters are split [106]. Based on these perceptive prin-
ciples synthetic images exhibiting object agglomerations can
be splitted by an investigator to be used for comparison with
partitions performed by an algorithm.

2.2. Radial symmetry decomposition

The constitution of cells in brain tissue is rather variable with
regard to the size and shape of cells. Therefore, a multiscale
technique appears to be proper in order to decompose cell clus-
ters which are composed of highly variable cells. Iterative vot-
ing is initialized by voting along the gradient direction where
at each iteration (Fig. 5) the voting direction (Fig. 3) and shape
of the kernel (Fig. 2) is refined. Let

• (Ii,j )
m,n
i,j=1 be the original image;

• (‖∇Ii,j‖)m,n
i,j=1 be the magnitude of the gradient as a measure

of the steepness of the edge independent of its direction that
is called here the voting magnitude. The magnitude of the
gradient is defined in more detail later on;

• �(i, j) be the voting direction, where �(i, j) := (cos �(i, j),

sin �(i, j)), (Fig. 3). �(i, j) is the angle between the positive
x-axis and the vector �(i, j);

• rmin, rmax be the range of radial symmetry (Fig. 3);
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• � be an angle, monotonically decreased with each iteration
step, which determines the width of the kernel;

• the voting area A+ be

A+(i, j ; rmin, rmax, �) :=
{
(i + r cos �, j + r sin �)

× |rmin �r �rmax, �(i, j)

− �

2
����(i, j) + �

2

}
;

• after computing the votes of each pixel in every bound-
ary point’s voting area which is specified later, the votes
are summarized at each iteration step in the voting image
V (i, j ; rmin, rmax, �), leading to reorientation. The evolving
voting image is shown for two examples at 4 iteration levels
in Fig. 7.

The intermediate results of the evolution of the voting land-
scape at each operation is shown in Fig. 7. In each instance,
the voting landscape belonging to a voted image is initially
blurred, then subsequently refined and focused into a singular
signal. It is reasonable to assume that the center of mass is lo-
cated along the gradient direction (Eq. (10)) if the process of
iterative voting is applied to images without prior knowledge
for object locations.

∇I (i, j) = (�iI (i, j), �j I (i, j)), (7)

�iI (i, j) = I (i + 1, j) − I (i − 1, j), (8)

�j I (i, j) = I (i, j + 1) − I (i, j − 1), (9)

� = arctan

(
�j I (i, j)

�iI (i, j)

)
, (10)

‖∇I (i, j)‖ =
√

(�iI (i, j))2 + (�j I (i, j))2. (11)

The discrete gradient magnitude (Eq. (11)) can be assessed
by convolution with Gaussian derivatives (Eqs. (13) and (14)).
The Gaussian function G� is denoted by:

G�(x, y) = 1

2��2 e−(x2+y2/2�2). (12)

The partial derivatives of G� are given as

�

�x
G�(x, y) = − x

2��4 e−(x2+y2/2�2) (13)

�

�y
G�(x, y) = − y

2��4 e−(x2+y2/2�2). (14)

The discrete approximations to the partial derivatives of the
Gaussian function (Eq. (12)) lead to suitable masks Fx , Fy to
perform the discrete convolution with I (Eqs. (15) and (16)).

Using a � = 1, resp. 5 × 5 kernel size turns out to be an
appropriate filter size for approximating the gradient magnitude

image ‖∇I (i, j)‖ (Eq. (18)).

Ĩx(k, l) =
M∑

m=1

N∑
n=1

Fx(m, n)I (k + 1 − m, l + 1 − n), (15)

Ĩy(k, l) =
M∑

m=1

N∑
n=1

Fy(m, n)I (k + 1 − m, l + 1 − n), (16)

where k = 1, . . . , m; l = 1, . . . , n; Fx , Fy of size M × N and
zero-padded edges in I are assumed.

To estimate the discrete gradient magnitude we obtain

∇I (i, j) ≈ (Ĩx(i, j), Ĩy(i, j)) and so (17)

‖∇I (i, j)‖ ≈
√

(Ĩx(i, j)2 + (Ĩy(i, j))2 (18)

can be determined by discrete approximation.
Eqs. (7)–(18) refer to initial kernel orientation, assumed that

the center of mass is located along the gradient direction. Even-
tually it turned out that reorientation of kernels is necessary to
detect centers of radial symmetries, especially when boundaries
are not regularly and smooth. Therefore, the kernels represent
voting areas for each boundary point. During a single iteration
step the votes are accumulated and for each boundary point
the new orientation and size of the kernel are derived from the
maximum of its voting area.

Since the main intent is to integrate the contribution of each
edge location of the contour it is important that boundary points
may not be dense and sparsely distributed.

Iterative voting along the gradient direction is influenced by
noise and deviation from strict geometric symmetry. To reduce
this influence the kernel is refined (Fig. 2) and reoriented (�,
Fig. 3) at each consecutive iteration and each edge location.
Refinement and reorientation is done along the maximum value
in the voting area (Fig. 3). For each point P, if Q is the maximum
in the voting area of P, the new voting direction at P is along
the direction of

−→
PQ. The computational cost lies in between

O(K) and O(KN�max(r
2
max − r2

min)) (K: number of pixels in
a voting area, N: number of contour points) depending of the
image size and shapes of objects [91].

The five parameters of the voting algorithm are considered
in more detail. The voting area A can by adapted to the range
of intensities where objects are located. The votes can be
switched either to bright objects or dark objects or to both
of them by changing the signs of Eq. (7). The voting area
A+(i, j ; rmin, rmax, �) (Eq. (7)) for bright objects is defined by

A+(i, j ; rmin, rmax, �) :=
{
(i + r cos �, j + r sin �)

× |rmin �r �rmax, �(i, j)

− �

2
����(i, j) + �

2

}
. (19)
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In contrast, the voting area A(i, j ; rmin, rmax, �) for dark
objects is given by

A−(i, j ; rmin, rmax, �) :=
{
(i − r cos �, j − r sin �)

× |rmin �r �rmax, �(i, j)

−�

2
����(i, j) + �

2

}
. (20)

If objects cover bright as well as dark intensity values then
bidirectional voting is needed:

A±(i, j ; rmin, rmax, �) := A+(i, j ; rmin, rmax, �) (21)

∪ A−(i, j ; rmin, rmax, �). (22)

For gray level images the voting magnitude of each pixel is
set to the gradient magnitude derived from the convolution with
the derivative of a Gaussian. Smooth surfaces are presented by
small gradients which can be filtered by introducing a threshold
	g . The voting of binary images was performed with a constant
magnitude that turns out to be superior because small protru-
sions of the external contour do not lead anymore to extreme
votes.

The radial range can be parametrized by rmin, rmax and the
angular range by �max . These parameters are selected due to
the shapes of the objects to be detected. If there exist an a
priori knowledge about the shapes and if they are constant
for instance in images containing clusters of certain geometric
forms these parameters can be set easily. To detect a circle we
can set rmin = rmax and �max = 0. For an ellipse x2/a2 +
y2/b2 = 1 we can use rmin = min(a, b), rmax = max(a, b) and
�max which is the maximum angle between the radial and the
normal vectors (e.g., 
 OP1Q1, 
 OP2Q2, and 
 OP3Q3) by
accomplishing arcsin |a2 − b2|/a2 + b2.

Since the maximum value of the voting area can likely be
located at the edge of it, it is essential to adapt rmin, and rmax

to resize the kernel. The aim in defining the new voting area
is to cover enough space around the current maximum to al-
low a convergence in every direction starting from the current
maximum. When d is defined as the distance between bound-
ary point and current maximum a shift of 2

3 ∗ d turned out to
be appropriate, concluding in rmin = 1

3 ∗ d , and rmax = 5
3 ∗ d as

shown in Fig. 4. Hence, the reorientation of the kernel not only
involves a possible change of direction but also (very likely) an
alteration of size by adapting rmin and rmax which has decisive
influence on the appearance of the voting image as a result from
a single iteration step. The absolute changes of the angle for
reorientation as well as of the distance from the boundary point
tend to be smaller with increasing iterations. This is caused by
rising convergence to local signals, supported by a gradually
decreased Delta, which makes the kernel successively narrower
until it is simply a line in the end.

The number of steps in the evolution of the kernel shape reg-
ulates the voting area. If the number of steps is too small, then
the centers of mass will be fragmented. If the number of steps is
too large, the computational cost will be increased. The mono-
tonically decreased sequence of �max = �0 > �1 > · · · > �N

controls the convergence. Updating of the voting direction is

Fig. 4. Resizing the kernel at two iterations. At iteration i + 1 r_max is
adapted to 5/3d and r_min to 1/3d.

followed by decreasing the angular range, resp. shrinkage of
the voting area. For a circle, N = 4 is adequate. If images are
noisy, then N should be increased, e.g., N = 16.

The voting image presents the voting landscape that is always
ranked. Hence, thresholding and local maxima determination
may be used to select the most prominent set of hypotheses.

The voting procedure has been adapted to regions containing
convex holes. In Figs. 5 and 6 we demonstrate how this is
achieved in an example of a region containing one hole. In
the first iteration the external contour is voted. If the region
contains more than one hole, then the contour of the largest
hole is voted first followed by the next smaller hole. Naturally,
the process can be applied to many holes and nested structures
(not shown here).

The major algorithmic steps are listed as follows:

1. Initialization: �max = �0 > �1 > · · · > �N

Set n := 0, where N is the number of iterations, and let
�n = �max .
Determine all boundary points P = (p, q) by tracing the
external boundary of regions and holes inside regions in the
binary image and store in B. Define rmin, rmax adapted to
each point P. Hence, a binarization and distance transfor-
mation of I(b) is required. Along the voting direction, the
first local maximum in the distance transformed image is
determined. Then rmax := 1.666 × d, where d is the dis-
tance between the boundary point P and the local maxi-
mum. Then rmin := 0.333 × rmax .

2. Initialize the voting direction and magnitude: Regarding the
voting direction, one approach for binary and one for gray
level images were realized.
Binary images: Consider the averaged perpendicular to
boundary point P and two neighbor points and normalize.
Gray level images: Compute the image gradient ∇Ii,j ,
and its magnitude, ‖∇Ii,j‖. For each boundary point
(p, q) ∈ B, define the voting direction by

�(p, q) := ∇I(p,q)

‖∇I(p,q)‖ .
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a

b

c

Fig. 5. Three steps of the process of iterative voting. The kernel traverses
all coordinates P of the contour (P is a boundary point with coordinates
i, j ). After one circulation (step) the angular range � is decreased. The
dashed arrows point to the same � which adapts with respect to orientation
at iterations shown in (b) and (c).

3. Determine the votes: Reset the vote image V (i,j ;rmin, rmax,

�n) = 0 for all pixels (i, j). For all points (p, q) ∈ B and
(u, v) ∈ A(p, q; rmin, rmax, �n) update the vote image by
one of the following voting magnitudes:

(a) For binary images add a constant magnitude 
 = 1
to each pixel

V (u, v; rmin, rmax, �n):=V (u, v; rmin, rmax, �n)+
.

(b) For gray level images add a weighted voting magni-
tude 
 which is composed of the gradient term and
the gray value image term each with 0.1. It turns out
that for gray images used here w1 = 1 and w2 = 3:


(u, v) = w1 · ∇I(p,q)

max(i,j)∈I‖∇I(i,j)‖
+ w2 · fu,v

max(i,j)∈I fi,j

inserted in

V (u, v; rmin, rmax, �n)

:= V (u, v; rmin, rmax, �n) + 
(u, v). (23)

Fig. 6. Two iterations of iterative voting of a region containing a hole.
(a) The voting always starts with the first iteration on the external contour.
(b) Then the next larger contour contained in the external contour is voted.
(c) Then the external contour is voted in the second iteration and followed
by voting the hole in (d).

4. Update the voting direction: For each boundary point
(i, j) ∈ B, revise the voting direction and find

Q = (u∗, v∗) = arg max{V (u, v; rmin, rmax, �n);

(u, v) ∈ A(p, q; rmin, rmax, �n)} (24)
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Let dp = u∗ − p, dq = v∗ − q, and

�(p, q) = (dp, dq)√
d2
p + d2

q

.

5. Update rmin and rmax : Set rmax = 1.25 × d , where d is
the distance between P and Q. The factor 1.25 is chosen
due to a better convergence. According to step 1 rmin is
0.333 × rmax .

6. Refine the angular range: Let n := n − 1, and repeat steps
3–5 until n = 0.

7. Median filtering of the voting landscape: To avoid overseg-
mentation the voting landscape arisen during the last iter-
ation step is smoothed by median filtering. The respective
size of the filter depends on the size and shape of the re-
gion to be decomposed. The compactness or thinness ratio
C [9] turns out to be a suitable parameter to describe the
shape of a region. It provides a measure of the deviation of
a region from an ideal circle where C becomes 1.

C = 4� · a

p
with 0�C�1.

The area a is determined considering only the foreground
of the region X1. The perimeter p results from the exterior
boundary supplemented by the boundary of holes. The filter
size for median filtering is calculated by s =c ·√C · A. The
constant c should be determined empirically and depends
on the size of the image. We obtained optimal results if c
is chosen between 0.25 and 0.5.

8. Postprocessing of the last voting landscape: In the last
smoothed voting landscape the local maxima are deter-
mined. These are used as markers for a marker based wa-
tershed transformation [95,96,107].

3. Results

In the following the results of the RSD and the WSD in
consideration of the EXD are presented.

3.1. Expected decompositions

These partitions are shown in Figs. 7–9 . Different persons
have partitioned the objects or separated images of cell clusters
as shown in Fig. 9. These images are considered as optimal
partitions which are compared to the results obtained by EXD
and WSD.

3.2. Watershed based decomposition

The four principal preprocessing steps before the watershed
algorithm is applied are: (1) binarization and calculating the
distance transform, (2) smoothing the gray level image, (3)
calculating the gradient image, (4) applying WSD to an image
composed of inner and outer markers. In order to facilitate
the comparison gray level images were binarized by the same

Fig. 7. Two binary images were voted over 16 iterations. Here, we show
results after 2, 4, 8 and 16 iterations. The coarse votes are focused to centroids
which are processed further on after the voting process.

method as mentioned above followed by the distance and the
watershed transformation.

The WSD leads to satisfying results if regions of a connected
component do not exhibit too strong overlaps (Figs. 10b, e, k
and 11b, e, h, k, n, q, t). However, small subregions positioned
around a relative large area (Fig. 11n) and small protrusions
with corners (Fig. 11q) produce inadequate results. The WSD
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a a’

b b’

c c’

d d’

e’

f f’

g g’

h h’

i i’

j j’

k k’

e

Original OriginalEXD EXD

Fig. 8. Synthetic images used for developing and testing the decomposition algorithms. Letters without apostrophe designate the original images and those
with an apostrophe the expected decompositions done by investigators. a, b and c are IPAN test images (http://visual.ipan.sztaki.hu/-corner/corner_click.html),
resp. [108]. In contrast to the IPAN test images we use test images with different kinds of holes and regions within holes.

result of the circle cluster (Fig. 10t) shows a good accordance
with the EXD result. Slight oversegmentations were obtained
in the synthetic images in Fig. 11k, q and t. Regarding the more
complex clusters in Fig. 12b and e we obtain comparable results
as observed before. Oversegmentations occur more frequently
than undersegmentations. At different regions we find cap-like
oversegmentations. Larger objects exhibiting small concavities
on their contours are undersegmented. In the scanned mouse
brain three cell clusters (Fig. 12k, n, q) were cropped and ana-
lyzed separate. The WSD do not produce an appropriate result
for this kind of clustering problem.

3.3. Radial symmetries decomposition

The RSD was applied to the same images like EXD and
WSD. The synthetic images (Fig. 10a, d, j) show a nearly

perfect match with the EXD results (Fig. 10c, f, l). The image
Fig. 10g shows a partial coincidence with the corresponding
EXD image Fig. 10i and more splitting paths as those found by
WSD. Splitting paths of smaller concavities were not detected.
Example Fig. 10m shows a slightly better result as WSD. The
airplane example in Fig. 10p shows a better partition as the
WSD result. In the circle cluster example in Fig. 10s RSD
founds split paths that are well located in between larger touch-
ing circles. A perfect result of the RSD in comparison to EXD
is shown in Fig. 11a. A nearly perfect match of split paths is
presented in Fig. 11d, g, j. In these cases WSD tends to compute
split paths oriented parallel to the image boarders. The holes are
integrated into the split paths and do not disturb iterative vot-
ing and calculation of radial symmetries. With the introduction
of a concave hole in Fig. 11m the complexity increases. How-
ever, several split paths determined by RSD in previous figures

http://www.visual.ipan.sztaki.hucorner/corner_click.html
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a a’

h h’

i i’

j j’

r

b

c c’

d d’

e e’

f

b’

f’

g

Fig. 9. A micrograph containing cell clusters of the dentate gyrus is shown in (a). (b), (c) and (h) are taken from Russ [109]. With respect to object shape and
positioning of objects in (b) and (c) these structures are comparable to cellular object (taken from Russ [109]). (d)–(f) are high resolution scans of cells from
a mouse brain. A part of the scan of a coronal mouse brain section is shown in (g) where the regions are marked by 3 black polygons. (i) and (j) are from
the Squid image database (http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html) used for shape description algorithms. However, the latter images
were contributed originally by Liu and Sclaroff [110]. (http://visual.ipan.sztaki.hu/corner/corner_click.html). The expected decompositions are shown on the
right side of each original image. Letters without apostrophe designate the original images and those with an apostrophe the expected decompositions done
by investigators.

with the same outer boarder are found again. Differences in
comparison to the EXD image in Fig. 11o can be observed
in between the protrusions of foreground structures into the
concave hole. Additional, holes do not disturb RSD (Fig. 11p)

even if a new convex object is located within the concave hole
(Fig. 11s).

The decompositions of natural images are presented in
Fig. 12. The source images are 8 Bit gray level images that

http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
http://www.visual.ipan.sztaki.hu/corner/corner_click.html
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Fig. 10. Results of partitioning by radial symmetry decomposition (RSD) in the first column, watershed decomposition (WSD) in the second column, and
expected decomposition (EXD) in the third column. The latter was realized by an evaluator. Here, most images do not possess holes. In (d), (g), (m) and (p)
the connected regions exhibit mixtures of corners and continuous concavities. The images (g), (h), (m), (n), (p) and (q) are not partitioned satisfying neither
by (WSD) nor (EXD). RSD introduced good splittings in between large circles in (s), however, small circles are subdivided insufficiently.
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Fig. 11. Analog to Fig. 10 the results of partitioning by radial symmetry decomposition (RSD) are presented in the first column, those of watershed
decomposition (WSD) in the second column, and the expected decompositions (EXD) are shown in the third column. As mentioned earlier, the latter was
realized by an evaluator. In contrast to the latter figure, most images do possess holes.
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Fig. 12. In the first column the results of the RSD are shown, in the second those of the WSD and those of the last column the EXD and are organized as in
Figs. 10 and 11.

were segmented by the Otsu thresholding method [94]. In
Fig. 12a–c a better decomposition in comparison to the WSD
was obtained. Especially the cluster in the upper left and right
corners were partitioned as in the EXD. In the second ex-
ample (Fig. 12d–f) of an image containing cell clusters RSD
detected more partitions and provides a result which is close
to the EXD. The WSD result in Fig. 12b shows many parti-
tions which are rather parallel oriented to the image boarders.
The latter disadvantage is also visible in the third example in
Fig. 12h. Here, the RSD comes close to the EXD, however,
finer partitions are still absent. The three examples of the small
cell clusters derived from high resolution flat bed scanning
(Fig. 12j–r) offer problems for the WSD in so far over- and

underpartitions were calculated. In contrast, the RSD approach
provides results that are close to the EXD, meaning that the
RSD technique can be applied to micrographs (Fig. 12d and
g) as well as to high resolution transparent flat bed scans of
histological sections of the brain.

Several cases of region clustering can be constructed that re-
duces the generalization of the RSD. For instance the cluster-
ing of relative large and small regular circle objects as shown
in Fig. 13. However, in the examples of cell clustering such
extreme variations of cell sizes do not occur.

A further improvement of decomposition can be reached by
applying the RSD for gray level images as aforementioned. In
Figs. 14 and 15 we compared results obtained by RSD applied
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ba

c d

Fig. 13. (a) The result of RSD using an estimate for filtering the centroids of the voting process. (b) The size of the median filter was fitted to the size and
shape of the region. (c) The EXD image. (d) The WSD result.

to binarized gray level image and to the same original gray
level images. This was done for light microscopic images as
well as high resolution scans of mouse brain sections. The vot-
ing landscapes at the final iteration are displayed in Figs. 14a,
f, k, and 15a, f, k and present obvious convergences around
the centroids of the object clusters. The results obtained by ap-
plying RSD to gray level images are shown in Figs. 14c, h,
m, and 15c, h, m and can be compared with those acquired
by applying RSD to binarized images Figs. 14b, g, l, and 15b,
g, l. The separation paths are more precise and oversegmenta-
tion is reduced. Furthermore, gray level information was used
to separate compact objects. This can be verified by compar-
ing the calculated separation paths in Figs. 14d, i, n, and 15d,
i, n with the expected object detection images in Figs. 14e, j,
o, and 15e, j, o. The benefits of the adaption of the RSD to
gray level images are proved also if the resolution is relative
low and structures are smoothed which is a feature of scanned
mouse brain sections (Fig. 15). In the mouse brain images a su-
perior separation of clustered objects was attained by the gray
level approach. Therefore, this technique can be considered as
a promising strategy for decomposition of more complex cell
clusterings.

4. Discussion

The synthetic images were developed as bilevel images. The
gray level images in Fig. 9 were segmented by the method
of Otsu [94]. The global segmentation strategy was applied
because shading errors do not appear in flat bed scan images
and we have optimized microscopic illumination with regard to
maximizing homogeneity. Therefore, shading corrections that

effects local gray level distributions were not necessary and
local adaptive thresholding was avoided because it turns out to
be complex if frame adaption is object size driven. The latter
emerge to be problematic due to the high variability of cell
cluster sizes which can be presented in multiple tiles of images
if larger histological regions (image mosaics) are analyzed.

As described by Metzler et al. [58] and Metzler et al. [46]
ultimately eroded points determined by the maximal distance
from all adjacent ultimate eroded points are centers of individ-
ual objects [111] that can be used for calculating separation
lines between them. However, Metzler et al. pointed out that
this entails that all objects have to be of similar size and objects
must exhibit regular shapes. Hence, compact regions of differ-
ent size cannot be decomposed correctly because the marker
generation depends on size and scale.

The WSD [14–16,18,19,23] is modified, optimized to the
specific object segmentation problem and applied by most in-
vestigators [14–24]. Since the WSD can be accessed easily be-
cause it is implemented in many software packages for image
analysis it prevailed for many separation problems. Obvious
advantages of the WSD is the applicability to different kinds of
preprocessed binary and gray level and color images containing
domains to be decomposed which vary within certain ranges in
size. At least WSD can be easily adapted to multidimensional
partition problems [112].

However, this approach has limitations with regard to cell
clusters composed of cells with large differences of cell areas,
shapes and center-to-center distances that are smaller than the
radius of the assembled objects [23]. Here, we observed prob-
lems in terms of holes within clusters of objects. If juxtaposed
objects share larger overlapping regions WSD becomes less
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Fig. 14. Comparison of gray and binary image based RSD. Each column belongs to one example. The first line of images (a), (f), (k) shows the voting
landscape after the last iteration. The result in terms of a binary visualization of the gray level RSD is shown in image line two: (b), (g), (l). These can be
compared with the results of RSD applied to the same, however, binarized images shown in image line three: (c), (h), (m). The decomposition result of the
gray level adapted RSD is plotted in the original gray level images in image line four: (d), (i), (n). The latter can be compared with expected results with
outlined objects in (e) or marked objects in (j) and (o).
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Fig. 15. Comparison of gray and binary image based RSD. Each column belongs to one example. The first line of images (a), (f), (k) shows the voting
landscape after the last iteration. The result in terms of a binary visualization of the gray level RSD is shown in image line two: (b), (g), (l). These can be
compared with the results of RSD applied to the same, however, binarized images shown in image line three: (c), (h), (m). The decomposition result of the
gray level adapted RSD is plotted in the original gray level images in image line four: (d), (i), (n). The latter can be compared with expected results of marked
objects (e), (j) and (o).

effective. When WSD is applied to irregularly shaped regions it
cause unsatisfying splittings. We observed cap-like separations
at large protrusions covering small areas. Another disadvantage
is that inaccurate split paths are placed around concavities not
passing them exactly. Overall, WSD clearly exhibits obvious
differences to the EXD. With respect to decomposition prob-
lems of a larger class of planar domains WSD turns out to be
inappropriate.

The iterative voting of radial symmetries avoids the draw-
backs due to irregular shaped regions, large and long protru-
sions covering small areas and inaccurate positioning of split
paths mentioned before. These disadvantages of the watershed
technique result mainly from its single-scale nature. The gener-
ation of a morphological scale-space, filtering of false markers,
and their stepwise reconstruction is independent of the object’s
size and additionally improve results.



O. Schmitt, M. Hasse / Pattern Recognition 41 (2008) 1905–1923 1921

An important improvement was achieved by adapting the
RSD working on binarized images to gray level images. We
have shown in numerous examples of varying complexity de-
rived form different imaging modalities that the gray level RSD
generates superior decompositions. Therefore, this new ap-
proach can be recommended for complex decomposition tasks.

The RSD can be applied successfully to object composi-
tions with strong discontinuities or corners. Especially, shapes
that are elongated or where objects are clustered in a circular-
[113] chain- and cluster-like manner [114] can be partitioned
efficiently by the RSD. The result and cost of the RSD algo-
rithm can be controlled by choosing a suitable sampling size
of the contour and appropriate smoothing before iterative vot-
ing starts. Furthermore, the kernel topography (Fig. 2) can be
adapted to the shape of particle to be partitioned. One limitation
of the RDS is the prior knowledge of scale which cannot be
generalized. To overcome this limitation multiscale extension
of the iterative voting of radial symmetries seems to be rea-
sonable. A further aspect is the completeness since the method
infers potential centers of mass in an image of a given scale.
These inferences need to be verified by yet another higher level
process. In comparison to the approach of Yang et al. [113] and
Yang and Parvin [91] we have coupled the result of iterative
voting of radial symmetries with subsequent marker based wa-
tershed segmentation. The markers used by the watershed post-
processing are of course those found by iterative voting. Hence,
we speak of radial symmetry based decomposition which is a
three step technique of preprocessing, iterative voting and post-
processing, i.e., watershed separation of the last voting land-
scape. Needless to say that this type of postprocessing can be
replaced by other techniques.

Finally, we would like to point out that centers of mass de-
termined by iterative passing the contour using appropriate ker-
nels can be determined by other methods as well, which are
geometrical calculation of gravity centers of binary objects and
local symmetry approaches [81,84]. Local orientation tech-
niques may turn out to be suitable as well with regard to local
singularities in gradient images [82,115,116].

We intend to solve partitions of strongly clustered cells of
different size and shape which may come up to huge and highly
complex clusters like that shown in Fig. 9g the WSD is not
suitable in terms of reliability. It turns out that the new RSD
approach offers some important advantages with regard to par-
titioning of objects covering features of

• convex and concave corners;
• convex and concave curves;
• geometric hierarchies of concavities and convexities;
• domains with holes within clusters of objects.

An important feature of the RSD is its reliability with regard
to similar split paths if holes are added to the same cluster of
objects. It was shown that objects with strong discontinuities
like the example of the binary plane and the binary fish result in
partitions that are rather similar like those derived from EXD.

It is now clear that, in addition to strong overlaps of domains
containing multiple holes (Fig. 11d–u) that such subregions

of a connected component can be integrated into meaningful
partitions. This observation suggests, that compared to other
studies the RSD approach has some principal advantages con-
cerning partition of clustered regions with emerging complex-
ity. At this point of time, however, it has not been possible to
identify clearly single cells in huge clusters of several thou-
sands of cells each composed of a few pixels which are derived
from high resolution flat bed scanning. Therefore, this issue is
considered currently by developing pre-partitioning steps and
parallelized algorithms. We have presented experimental data
that the RSD approach, while not definitive, will provide a use-
ful perspective for future investigations of decomposing highly
complex aggregations of biological cells.
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