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Abstract

Building a digital three dimensional representation of a human brain is a challenging task. Such a model provides insights into the
microstructure of cortical layering and columns. The presented work is based on a complete dissected and preserved human brain that
has been serially sectioned at a coronal resolution that is suitable for single cell detection. More than 6000 sections have been generated
and exist as digital images. To obtain a valuable three dimensional representation, morphology preserving affine linear and nonlinear
registration schemes are necessary steps. To rebuild a serially sectioned brain, reference images derived from a non deformed object,
e.g., MRI or block face images, are necessary for a faithful affine linear and nonlinear registration. In the case of block face images
the brain regions must be separated from highly variable background regions to obtain a suitable stack of segmentation images. Among
the image segmentation algorithms we found fuzzy c-means techniques as a promising starting point for a sophisticated segmentation
framework of either gray level or color images within 2- and 3-dimensions.

With respect to algorithmic complexity and computation cost, two fuzzy c-means algorithms were implemented. A proper image pre-
processing strategy turned out to be necessary for accurate and robust segmentation results. Primarily, the algorithms work in a para-
metric resp. supervised mode. Additionally, an automatic mode helps to explore the parameter space within a reasonable range and to
compare the segmentation result with an optimal one, provided by an expert. By minimizing the differences we can set up parameters that
are used for series of adjacent images. So, it is possible to obtain optimal segmentations independent of illumination disturbances, arti-
facts and defocusing.

We present a complete high resolution and accurate segmentation of the first complete human brain that was sectioned, photographed
and digitized at histologic resolution. Based on these images, a succeeding 3D representation is presented. Finally, a segmented and spa-
tially correct straightened data set is available now for coregistration tasks together with the high resolution histologic data set.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Information of structural modalities of a biological
object at high spatial resolution, i.e., xr, yr, zr 6 100 lm,
have a strong impact for providing frameworks for map-
ping and coregistration of other modalities derived from
RNA- and protein-expressions [21]. To obtain data from

mammal brains at this resolution, it is necessary to dissect
them by histologic techniques. This yields to a partial loss
of spatial information from the macro-, through the meso-
down to the microscale. The preparation of a serially sec-
tioned brain is followed by histologic procedures that are
in particular determined by the structures, functional or
the molecular modalities which are to visualize. The results
are digitized by videomicroscopic mosaicing or high resolu-
tion transparent flat bed scanning. The stack of images
must be preprocessed before alignment of the images is per-
formed. The most important procedure is a segmentation
of the foreground of the images. Further steps of prepro-
cessing are discussed by Modersitzki [23]. The rigid, linear
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affine or nonlinear alignment [10,23] of such a preprocessed
image stack may introduce deformations because the infor-
mation of the global shape of the object is lost or loss of the
information between furthest foreground objects apart is
largest. Large image stacks consisting of relative thin sec-
tions will yield to larger registration based deformations
than small image stacks of the same object with thick sec-
tions. To solve this problem reference sections at a lower
resolution that have a correct spatial relation to each other
can be used to register deformed high resolution images,
i.e., template images. Ideally, a direct template to reference
alignment can be performed if each reference section has a
template section counterpart. Thus, deformations intro-
duced by the registration technique can be avoided
[45,26,25,11,5].

In this study, a stack of reference images was prepro-
cessed to obtain images for the step of coregistration with
histological images. The reference images were derived
from the surface of the serially sectioned paraffin block
containing the embedded brain. However, the so-called
block-face or episcopic images contain several structures
which have to be assigned to the background. According
to the relative transparency of the embedding material, illu-
mination disturbances and sectioning problems over 6200
whole brain sections the segmentation of the foreground
becomes a challenging task. Conventional segmentation
algorithms [15,17,35,50,24,37,43,27,52,53] mainly based
on threshold and local adaptive techniques seem to be
improperly. A statistical pixel classifier based on random
fields [51,44], adaptive weight smoothing [33], adaptive seg-
mentation via expectation–maximization [49] and fuzzy c-
means segmentation [28–31] are more promising. A review
of statistical methods for brain segmentation is provided by
Bezdek [8] and further segmentation methods can be found
in [3], however, most techniques are developed for gray
scale MR image segmentation.

In this study, a reliable segmentation of the stack of
color images turns out to be impossible by using stan-
dard segmentation approaches. This is due to different
artifacts in the images which emerged within sectioning
the embedded brain over a period of one year. In partic-
ular these artifacts are noise, variation of the illumina-
tion intensity, partly inhomogeneous illumination, small
shifts of the holder of the paraffin block and variations
of camera focus. A further problems that hampered con-
ventional segmentation was the relative transparency of
the paraffin wax. This phenomenon makes it difficult to
classify pixels around the contour of the brain. It is com-
parable with partial volume averaging known from MRI-
scanning where multiple tissues are present in a single
pixel. In several publications [28–31] it was shown that
soft segmentation methods combining clustering tech-
niques with fuzzy set approaches give rise to superior
classification results in comparison to conventional seg-
mentation algorithms. Motivated by these promising
studies soft segmentation methods were adapted to color
images derived from serial block-face sections.

The key contribution of this work consists in image seg-
mentations based on Adaptive Fuzzy C-Means (AFCM)
and on Fuzzy and Noise Tolerant Adaptive Segmentation

(FANTASM), provided in a fast parallel implementation
for a shared memory architecture. Additionally, an optimi-
zation technique for unsupervised parameter estimation for
AFCM and FANTASM was developed. This automatic
segmentation framework then has been applied to a real
world problem, particularly the segmentation of a complete
series of 6213 block-face images of a human brain. Finally,
we present a 3D-reconstruction of the segmented stack of
reference images.

2. Material and methods

2.1. Material

The brain of a neurologic normal 65 year old female vol-
unteer (Body Donor Program, Institute of Anatomy, Uni-
versity of Lübeck, Germany) was dissected post mortem. A
whole brain immersion fixation in a buffered formaldehyde
(PBS, pH 7.4, 0.9% NaCl) solution for 3 months followed
by embedding in paraffin wax. Sections of 20 lm thickness
were cut by a sliding microtome (Fig. 1).

2.2. Imaging

Before each sectioning a high resolution episcopic image
(EPI) from the block-face of the paraffin block was pro-
duced from a scanner camera that is placed directly over

Fig. 1. Over the microtome the scanner camera is mounted surrounded
from daylight fluorescent tubes. The paraffin block is just below the
scanner camera in the stop position from where it is traced back to the
front of the sliding microtome.
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the stop position of the paraffin block (Fig. 1). The RGB-
image has an external resolution of 1352 · 1795 pixels with
a dynamic range of 8 Bits per color channel. The technical
features of the illumination with daylight characteristics are
described by Schmitt [39].

2.3. Preprocessing

2.3.1. Color processing

The digital images used here are represented in matrices
(b) b(x, y) 2 I whereby the intensities (I) I = {0, . . . ,2k � 1}
have a k-Bit range. Here, three channel images P(x, y) are
presented by three matrices b. For an image size of
m · n-pixel the matrix has its origin at b0,0 is defined as
follows:

B ¼

b0;0 � � � b0;m�1

..

. . .
. ..

.

bn�1;0 � � � bn�1;m�1

2
664

3
775

The RGB-image consists of the matrices BR, BG and BB

whereby the value of a pixel at (x, y) is given by the vector

P ðx;yÞ ¼
bR

x;y

bG
x;y

bB
x;y

0
BB@

1
CCA

Among the color spaces RGB, CIEXYZ, CIELUV, CIE-
LAB, YUV, YIQ, HSV, HSL [38] we observed in the case
of the image set under work that a transformation of the
color images to gray value images can be performed opti-
mal with respect to contrast preservation using a weighted
mixture of the RGB, HSL (hue lightness, saturation) and
HSV (hue, saturation, value) models:

P gray
ðx;yÞ ¼ 0:3 � P RGB-B

ðx;yÞ þ 0:5 � P HLS-L
ðx;yÞ � 0:6 � P HSV-V

ðx;yÞ

Note, that the value channel HSV-V is subtracted in this
model. An original EPI image and the resulting color trans-
formation is shown in Fig. 2. This is followed by a normal-
ization to a 8-Bit gray level image.

The distribution of intensities was stretched according to

T ðiÞ ¼ 255 � HðiÞ ¼ 255

M � N
Xi

�¼0

hð�Þ ð1Þ

whereby h(�) is the histogram of the image and H(i) the
cumulative distribution function of the histogram. This
transformation that enlightens dark image regions and in-
creases the contrast is applied to each pixel.

Îðx; yÞ ¼ T ðIðx; yÞÞ ð2Þ

2.3.2. Noise filtering
A further important step of preprocessing is smoothing

which facilitates the succeeding segmentation as well as a
preservation and enhancement of edges. We implemented
an edge preserving smoothing filter [41]. It works similar
to the widely known Kuhawara filter [46] by using a set
of differently shaped filter masks. On each pixel position
for all the masks the average gray value and the variance
is calculated. Finally, the pixel value is chosen as the aver-
age gray value of the mask that overlaps the image region
of the least variance. Compared to the Kuhawara filter, the
extensions of the implemented algorithm are the usage of
21 filter masks and the repetition of filtering until changes
are under a certain threshold.

In a last preprocessing step, noise was reduced by an
Adaptive Nonlinear Diffusion Smoothing (ANDS) [4]. This
ANDS method has an edge preserving behavior as well
as a powerful smoothing characteristic. The iterative proce-
dure of [4] was implemented. The iteration has been per-
formed with a (2S + 1 · 2S + 1) filter-mask with scaling
factor S according to

Fig. 2. The original image (left) and the color space transformed image.
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I ðtþ1Þð~xÞ ¼

PþS

i¼�S

PþS

j¼�S
I ðtÞðx1 þ i; x2 þ jÞ � wðtÞ

PþS

i¼�S

PþS

j¼�S
wðtÞ

ð3Þ

where~I is a vector with one element, i.e., the gray value im-
age, resp., a vector with three elements in the case of color
images and w(t) the convolution kernel

wðtÞðx1; x2Þ ¼ exp � jd
ðtÞðx1; x2Þj2

2 � k2

 !
ð4Þ

with k as the variance of the filter-mask and d(t)(x1, x2) as
the gradient in a 3 · 3-window

dðtÞðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x1
þ G2

x2

q
ð5Þ

with

ðG2
x1
;G2

x2
Þ ¼ oI ðtÞðx1; x2Þ

ox1

;
oI ðtÞðx1; x2Þ

ox2

� �
: ð6Þ

2.4. Segmentation

2.4.1. Adaptive fuzzy c-means segmentation

The preprocessed gray level images contain artifacts and
intensity inhomogeneities which make it impossible to
apply the standard fuzzy segmentation algorithm [12,7].
Continuous changes of intensity inhomogeneities can be
counteracted by a so-called gain field, resp., multiplier field

which has the same size like the underlying image. It is
determined iteratively within each segmentation step for
each pixel and its fuzzy membership to a certain class.
The centers of classes are multiplied by the gain field g(x,

y). The gain field is smooth and shows only small variations
in the x- and y-direction. The two dimensional AFCM-
algorithm minimizes the following objective function with
regard to membership functions u, centroids v and the gain
field g:

J AFCM ¼
X

x;y

XK

k¼1
uq
ðx;yÞ;kkyðx;yÞ � gðx;yÞ � vkk2

þ k1

X
x;y
ððdx � gðx;yÞÞ

2 þ ðdy � gðx;yÞÞ
2Þ

þ k2

X
x;y
ððdxx � gðx;yÞÞ

2 þ 2ðdxy � �gðx;yÞÞ
2

þ ðdyy � gðx;yÞÞ
2Þ ð7Þ

The parameters of JAFCM are defined below:

q weighting exponent on each fuzzy
membership, resp., amount of fuzziness of
the resulting classification)

u(x, y) membership function (see (8))
g(x, y) unknown Gain Field
v class center(s) or centroid(s) of class(es) k

(see (9))
dx, dy known finite operator of deviation along

the columns and rows

k1, k2 term of first and second order regulation

* one dimensional discrete convolution

** two dimensional discrete convolution
dxx dxx = dx * dx

dxy dxy = dx ** dy

The parameters k1 and k2 should be adjusted with respect
to the regularity of the inhomogeneities of intensities. For
small fluctuations of intensities, resp., homogeneous distri-
butions of intensities large k1 and k2 values should be
chosen.

The function JAFCM can be minimized by calculating the
first derivative of JAFCM with respect to u(x, y), k, vk and g(x,

y) and setting it to zero [12,7,29]. The algorithm for mini-
mizing JAFCM is listed below:

(1) Initialization
(a) vk initialize for k = 1, . . . , K

(b) "x, y:g(x, y) = 1

(2) "x, y and k = 1, . . . , K calculate new membership
values

uðx;yÞ;k ¼
kyðx;yÞ � gðx;yÞvkk�2=ðq�1Þ

PK
n¼1

kyðx;yÞ � gðx;yÞvnk�2=ðq�1Þ
ð8Þ

(3) Calculate new centers of classes, for k = 1, . . . , K

vk ¼

P
x;y

uq
ðx;yÞ;k � gðx;yÞ � yðx;yÞP
x;y

uq
ðx;yÞ;k � g2

ðx;yÞ
ð9Þ

(4) Determine the new Gain Field

XK

k¼1

uq
ðx;yÞ;kh yðx;yÞ; vki ¼ gðx;yÞ

XK

k¼1

uq
ðx;yÞ;k hvk; vki

þ k1ðH 1 � gÞðx;yÞ þ k2ðH 2

� gÞðx;yÞ ð10Þ

The convolution kernels H1 and H2 are given by:

H 1ðx; yÞ ¼ dx � �dx þ dy � �dy

¼
0 �1 0

�1 4 �1

0 �1 0

0
B@

1
CA

H 2ðx; yÞ ¼ dxx � �dxx þ 2ðdxy � �dxyÞ þ dyy � �dyy

¼

0 0 1 0 0

0 2 �8 2 0

1 �8 20 �8 1

0 2 �8 2 0

0 0 1 0 0

0
BBBBBB@

1
CCCCCCA
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Where �f is the mirror reflection of the finite difference oper-
ator f with the notation �f ðiÞ ¼ f ð�iÞ [31].

(5) If the criterion of convergence is fulfilled the algorithm
stops otherwise it proceeds with the next iteration at
step 2.

The criterium of convergence is the maximal change of
the membership for all pixels at two successive iterations.
If the change is smaller than a threshold then the classifica-
tion of the pixels for a single image terminates. We
observed for the data set under investigation that a thresh-
old of 0.01 provides optimal classification results.

We applied the algorithm for the initialization of class
centers according to [29]. Because the AFCM algorithm is
robust against false initializations of class centers we distrib-
uted the centers equidistantly over images and observed
a fast adaption of the classification process to the classes.

The calculation of the Gain Field (10) is an expensive
computation, therefore, the Jacobi-method was realized
by a multi-grid algorithm [42].

The matrix form of the Gain Field (10) is

f ¼Wmþ ðk1H1 þ k2H2Þ m ¼ Am ð11Þ
whereby f ¼

PK
k¼1uq

ðx;yÞ;khyðx;yÞ; vki and m = g(x, y) are
brought into a vector. W is a diagonal matrix with the ele-
ments

PK
k¼1uq

ðx;yÞ;khvk; vki on the diagonal, H1 and H2 are the
versions of H1 and H2 and A = (W + k1H1 + k2H2). The
equation f = Am is solved to m by determining the inverse
A�1 for A.

If A = D � L � U has been decomposed with D the
diagonals, L the lower negative triangular matrix and U

the upper negative triangular matrix of A then we obtain
the weighted Jacobi-Iteration by the following rule:

mðiþ1Þ ¼ ½ð1� xÞIþ xD�1 ðLþUÞ�mi þ x D�1f ð12Þ
with I as the identity matrix and x as a parameter of
weighting (x = 0.3 has been proved and used for all
images).

If v is an approximation of the solution of m then
the error is determined by e = m � v. The error e satis-
fies the differential equation Ae = r whereby r = f � Av

is residual. The REDUCE-Operator transforms the Gain

Field at a large resolution to its half and the EXPAND-
Operator expands each pixels at a coarse resolution
according to its (2 · 2)-neighborhood up to its original
resolution.

2.4.2. Fuzzy and noise tolerant adaptive segmentation

To improve the behavior of the AFCM fuzzy classifica-
tion with respect to noise the Fuzzy and Noise Tolerant

Adaptive Segmentation Method (FANTASM) has been
implemented [28].

J FANTASM ¼ J AFCM þ
b
2

X
x;y

XK

k¼1

uq
ðx;yÞ;k

X
n2N ðx;yÞ

X
m 6¼k

uq
n;m ð13Þ

The following new parameters are used:

b determines the smoothness of the
membership function and is determined
empirically.

N(x, y) the set of neighborhood pixels.

The steps of the FANTASM-algorithm are listed below:

(1) Initialization
(a) vk initialize for k = 1, . . . , K

(2) "x, y and k = 1, . . . , K the membership values

uðx;yÞ;k ¼
ðkyðx;yÞ � gðx;yÞvkk2 þ b

P
n2N ðx;yÞ

P
m6¼k

uq
n;mÞ

�1=ðq�1Þ

PK
i¼1

ðkyðx;yÞ � gðx;yÞvik2 þ b
P

n2N ðx;yÞ

P
m6¼i

uq
n;mÞ�1=ðq�1Þ

ð14Þ
(3) New calculation of the Gain Field

Fig. 3. (Left): Image before segmentation. (Right): Lattice containing 6 image sectors.
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XK

k¼1

uq
ðx;yÞ;kh yðx;yÞ; vki ¼ gðx;yÞ

XK

k¼1

uq
ðx;yÞ;k hvk; vki

þ k1ðH 1 � gÞðx;yÞ þ k2ðH 2 � gÞðx;yÞ
ð15Þ

(4) Calculate the new centers of classes for k = 1, . . . ,K

vk ¼

P
x;y

uq
ðx;yÞ;k � yðx;yÞP
x;y

uq
ðx;yÞ;k

ð16Þ

(5) If the criterium of convergence is fulfilled the proce-
dure stops otherwise it proceeds with the succeeding
iteration at step 2.

2.4.3. Parallelization of AFCM and FANTASM

Due to large image sizes, image contents and parameters
of AFCM and FANTASM the computation on a sequen-
tial von-Neumann-architecture is relatively expensive. For
one image of the data set under investigation an Intel PIII
1 GHz machine running under Linux needs 5:10:28 h.
Therefore, it is mandatory to develop efficient algorithms
for efficient hardware.

Thus, we implemented the segmentation on a parallel
computer, a 72 processor shared memory 64 bit architec-
ture (SUN sf15k). For parallel computation, each image
is partitioned into disjoint sectors, where sectors are
processed by threads. These threads – similar to processes
– run in parallel, either by time division or on several pro-
cessors under control of the operating system. For the
demands of the classification algorithms used here it is nec-
essary to perform a synchronization of threads, especially
for the calculation of convolutions which makes point
operations necessary. (Fig. 3)

To determine the number of threads in x- and y-direc-
tion the following scheme was used (n: size of image in x-
direction, m: size of image in y-direction):

fnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n � m
#desired Threads

r
ð17Þ

#Threads in x� direction ¼ round
n

fnorm

� �

#Threads in y� direction ¼ round
m

fnorm

� �

Naturally, a maximal partition into single pixels does not
make sense, therefore, the number of threads is restricted
by:

n;m P fnorm P 32:

In practice, all threads for one image were generated at the
beginning of a calculation, thereafter the corresponding
threads for certain calculations were activated by the main

Fig. 4. The synchronization of threads and their relative use of computing
time is shown here.

Fig. 5. The access of the parallel multi-grid algorithm to sectors and regions within sectors of an image at different resolutions.
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thread if certain conditions are fulfilled. The threads were
synchronized as shown in Fig. 4.

The calculation of the Gain Fields consists of a convolu-
tion operation (formula 12) that can be parallelized by allo-
cation of additional memory. The multi-grid approach for
solving the differential equation was parallelized by assign-
ing the pixel sets at different resolutions of each sector to a
certain thread. If the resolutions are coarser the parallelism
decreases until only one thread per sector is active. Using
this scheme a meaningful partition of an image to threads
can be maintained and the synchronization is kept minimal
(Fig. 5).

At least, the main thread calculates in a sequential part
the result, resp., the new centers of classes and saves the
results as a segmented image.

2.4.4. Optimal parameters

As already pointed out k1 and k2 have to be initialized
for AFCM and b, n (n: neighborhood) for FANTASM.
A suitable value for k1 is 2 · 105 and for k2 is 2.75 · 105

(k1 < k2) for a pre-segmentation with 5 classes and for a
final segmentation with 3 classes k1 is 2 · 2.54 and for k2

are 4 · 104 leads to reasonable results. Finally, a bilevel
image masks the intensity values of the non-segmented

Fig. 6. The SSDs within different parameter spaces for two adjacent images are shown. In (a) and (b) the local minimum of SSD lies at the border of the
parameter space. In (c) and (d) an optimal local minimum was determined.

O. Schmitt et al. / Image and Vision Computing 26 (2008) 289–301 295
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image. In order to control the segmentation and to observe
efffects at critical regions 3 classes were calculated. How-
ever, we observed strong over- and under-segmentations
specially at those images exhibiting larger deviations from
the mean intensity and variance of the image statistics.
Because the parameter space is relative large and small
changes of parameters leads to large differences of the seg-
mentations results we implemented an approximation to
the optimal parameter set for a particular segmentation.
A measure for the difference of two adjacent images bi, bj

is the Sum Squared Difference Mass (SSD) (Fig. 6).

SSDðbi; bjÞ ¼
Xm�1

x¼0

Xn�1

y¼0

ðbiðx;yÞ � bjðx;yÞÞ2: ð18Þ

If a SSD is larger than a threshold which is dependent on
image size, variance and mean intensity the segmentation
of all images exhibiting the optimal segmentation is deter-
mined interactively and thereafter an optimization proce-
dure of certain parameters within a predefined search
space can variate the parameters (multi parameter optimi-
zation) until the minimal SSD is reached. The step size for
searching the k1, k2, b parameter space can be predefined.
The optimization can be performed either over a certain
search space (multi parameter mode) or until SSD does
not decrease any more (automatic mode). In Fig. 6 local
minima within a search space of k1 and k2 are shown.

We have tested the automatic mode for those images
that show strong changes of their pixel statistic and

Fig. 7. (a) Shows the original image before segmentation. (b) The segmented foreground of the original image (a). (c)–(f) Show four consecutive images
which have a much larger brightness than the preceding image 561 in (a). (h), (j), (l) The parameters for the segmentations of images 562, 572, and 585 are
determined automatically and are not disturbed by images (c)–(f). (g), (h) and (i) display the expected segmentations which were obtained interactively.
The automatic segmentation was as good as the interactive resp. optimal segmentation where parameters were optimized by an investigator.
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obtained a satisfying segmentation which is obviously bet-
ter than without parameter optimization (Fig. 7).

3. Results

To compare the segmentation results of the AFCM and
FANTASM method (Fig. 8) alternative segmentations of
image 3005 were generated. The Otsu-method [24], a local
median threshold technique [9], the region growing
approach [16], the minimum of the smoothed gray level fre-
quencies [34,40] and local adaptive segmentation [36].

3.1. Segmentation results

The segmentation method of Otsu leads to the best
results among the alternative approaches. Oversegmenta-
tion and coinstantaneous segmentation of details like small
sulci produces results comparable with AFCM and FAN-
TASM. The local median threshold technique [9] and the
minimum of the smoothed gray level frequencies are rela-
tive similar whereby the latter provides better segmenta-
tions at the cortical surface. The local median threshold
segmentation show the tendency to slight undersegmenta-
tion. The adaptive thresholding methods segments small
objects located within the background and classifies pixels
of the paraffin wax phase at the cortex border to the fore-
ground. Therefore, these methods provide a slight overseg-
mentation. The region growing approach delivers a
oversegmentation especially within the foreground leading
to holes within the striatum (Figs. 8, 9).

The same ROI of each segmentation consolidate the
impression of the comparisons of whole image segmenta-

tions. In Fig. 10 the large oversegmentations by the adap-
tive and the region growing method are noticeable. The
Otsu and the histogram minima method show best results
among the conventional segmentation algorithms with
respect to over- and undersegmentations. The AFCM
method provides less oversegmentation than the FAN-
TASM method whereby the latter shows better segmenta-
tion results of small sulci.

3.2. 3D-reconstruction

After segmentation of all block-face images we per-
formed a homogenization of the image statistic and gener-
ated a three dimensional reconstruction (Fig. 11). The
coarse sulci and gyri pattern can be detected easily and
are used now to relate sulci and gyri of the appropriate
coronal histologic sections.

As already mentioned, the duration of the ACFM
method on a single processor using one thread takes
5:10:28 h.

3.3. Results of parallelization

Using 64 processors, the segmentation of a single image
could be speed up by factor 23. The efficiency of paralleliza-
tion, defined as speed up per used number of processors is
0.36. In order to use the full performance of the machine,
the program allows to segment multiple images in parallel.
In a configuration of 15 threads per image and 16 image seg-
mentations in parallel we could reach an efficiency of 0.95.
For each image about five minutes were needed. Compared
to the time on a single processor, a speed up of about 60 using

Fig. 8. Segmentation results of image 3005: (a) original image, (b) preprocessed image, (c) AFCM, (d) FANTASM.
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64 processors is reached. Generally, a mixture of intra image
parallelization and processing of multiple independent
images is a proper way to exploit the computing power of
shared memory multiprocessor systems.

4. Discussion

A whole human brain was sectioned serially and sections
were mounted on glass slides for succeeding processing and
analysis. The sections are deformed and do not match spa-
tially anymore. To perform an exact registration it is neces-
sary to align them with undistorted reference images before
sectioning. Therefore, a block-face image before each sec-
tioning was produced. The block-face image contain arti-
facts mainly caused by illumination changes and slight
focusing errors. Therefore, a segmentation technique must
be realized that manage these disturbances to produce
accurate and robust segmentations of the foreground class
in each image. However, suitable algorithms which make
use of statistical procedures are computational expensive.
Thus, a parallel version of the AFCM and FANTASM

algorithms for a memory shared architecture have been
developed. Color images have been preprocessed to obtain
appropriate data for accurate and robust segmentation.
AFCM and FANTASM produced optimal segmentation
results after performing a parameter optimization. Using
this extension the whole series of 6213 images can be
segmented.

The advantage of the memory shared architecture con-
sists in the common access of all threads to the whole range
of memory addresses. A further advantage for FANTASM
is that different ranges of memory used in parallel by differ-
ent threads of the algorithm must not be interchanged after
each iteration. Furthermore, thread-programming is porta-
ble to other architectures (single processor and multipro-
cessor platforms).

The AFCM produces slightly undersegmentations espe-
cially at the boarder of the cortical surface and within deep
and small sulci. In contrast, FANTASM detects boards of
small sulci to a certain degree, however, slight oversegmen-
tations occur within those subcortical regions sharing sim-
ilar intensity statistics like image regions within small sulci.

Fig. 9. Image 3005 segmented by: (a) Otsu, (b) mean intensity, (c) region growing, (d) histogram-minima, (e) adaptive. White arrows: undersegmentations,
red arrows: oversegmentations.
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In comparison with conventional segmentation algo-
rithms the same problems of over- and undersegmentations
are observed. Due to the size of 46 GB we performed a
comparison for a small sample of images for the conven-
tional methods only. Hence, these methods were not tested
in an semi automatic mode over the whole image stack like
the AFCM and FANTASM methods. However, dramatic
over- and undersegmentations especially within critical

foreground regions like the subcortical area and the corti-
cal surface can be expected.

Definitely, there exist other sophisticated methods, e.g.,
Markov random field based segmentation [6,44,18,14],
multilevel, resp., scale-space approaches [20], anisotropic
filtering [3] segmentation based on genetic algorithms
[47,13,22], neural networks [48,1], hybrid segmentation
techniques [32], statistical procedures [19,49,2] and
adaptive weight smoothing [33]. A qualitative and quanti-
tative comparison of conventional segmentation operators
was tested for small samples (Fig. 8–10). They were not
applied to the stack of images because we concentrated
on solving the problem of segmenting a complex image
scene within a extraordinary large data set at reasonable
time. Based on this spadework data can be compared
easily with results obtained from other sophisticated seg-
mentation operators.

The developed parallelization enables us now segment-
ing large datasets of serially sectioned paraffin mouse and
rat brains as well for morphologic phenotyping and high
through put analysis. These histologic sections may be up
to 4 times thinner and end up with approximately 4000
coronal sections. Therefore, an efficient parallelization
and robust algorithm is a necessary condition to perform
comprehensive segmentation tasks on histologic data sets.

An interesting prospect would be a succeeding fine seg-
mentation of a dilated and filled version of the presegment-
ed data set with the three dimensional version [30] of the
FANTASM method to obtain accurate segmentations of
fine sulci and a concurrent preservation of subcortical
structures belonging to the foreground.

First of all, an important step for coregistration with
high resolution histologic data down to single cell data of

Fig. 10. ROI of image 3960: (a) original image, (b) AFCM, (c) FANTASM, (d) Otsu, (e) mean intensity, (f) region growing, (g) histogram-minimum, (h)
adaptive, (i) marked ROI.

Fig. 11. Reconstruction of all segmented block-face images.
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the Human Neuroscanning Project have been completed
and we are now able to reconstruct spatially exact locations
of cell populations in this histologic data set of a human
brain.
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of Anatomy (University of Lübeck) for their excellent his-
tologic preparations, digitizing and data administration,
W. Kühnel (Institute of Anatomy, Medical University Lü-
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