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Abstract Successful segmentation of a multilevel to a
bilevel microscopic cell image rather frequently gives rise to
touching objects which need to be separated in order to per-
form object specific measurements. The standard approach
of dealing with this problem is a watershed decomposition
of gradient, distance or low pass filtered transforms. How-
ever, if cell clustering is excessive, the cell size varies and
cells have various shapes that are different from circles the
watershed approaches produce unsatisfying results.

We found a technique that splits cell clumps into mean-
ingful parts. Since this method is based on the analysis of
contour curvature on the scale space of Fourier coefficients
relevant dominant points can be recognized. Based on an
optimized heuristic approach pairs of these dominant points
are recursively matched since splitted objects do not pos-
sess concavities respectively intrusions anymore. The ad-
vantages of this approach are (i) the independence of cell
shapes which are clumped, (ii) the consideration of holes or
background intensities within objects, (iii) the robustness in
terms of convergence and a few parameters only to adapt to
other families of decomposition problems.

The objective of this contribution is to explain the algo-
rithm, show its results using different examples from bench-
mark databases, self generated images and complex config-
urations of cell images.
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1 Introduction

In dependence of the quality of staining of cells in histolog-
ical sections [95] global segmentation performed by stan-
dard methods [46, 80, 93, 110, 120, 127] produce bilevel im-
ages that contain sufficient foreground information for fur-
ther cell-object specific processing (Fig. 1b, c). Microscopic
images of histological sections [78] always contain overlaps
of structures because they are distributed in a relative thin
section space that have in most cases a height of 3–60 µm
which is projected on the 2D-plane of an imaging sensor
(Fig. 1a). Juxtapositioned objects appear clumped because
their projections overlap partially or totally (Fig. 1b). These
overlaps are reduced in confocal laser scanning microscopy
(CLSM) [2, 5]. However, for long term measurements of
large areas of histological sections, for instance serial sec-
tions of brains, CLSM is inapplicable and motorized video
microscopy [97] or high resolution transparent flat bed scan-
ning [96] need to be performed.

1.1 Decomposition of Cell Clusters

Cytological as well as histological analysis of cell parame-
ters [21, 36, 65, 84, 87, 126] assume that the objects, i.e. cell
bodies and/or cell nuclei, to be measured are not connected
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(Fig. 1c, d). Naive methods like conditioned and scale space
based erosion [17] result in an unsatisfying splitting if ob-
jects are juxtaposed very closely. Even, sophisticated proce-
dures like watershed segmentation of heavily clustered cells
with different shape and size may fail [4, 11, 20, 24, 29, 57,
66, 76, 116–118].

Since many years [44, 45, 81, 82, 91, 101, 109, 112, 125]
much effort has been spent to decompose such overlaps of
cells because successful and robust splitting is the key for
automation [68]. In cognitive psychology it has been sug-
gested by Attneave [7] that information along visual con-
tours is concentrated in regions of high magnitude of curva-
ture, rather than being distributed uniformly along the con-
tour. Attneave [7] indicates that most shape information is
contained in the corners (high curvature points), which are
able to characterize the contour. Recently, this has been in-
vestigated more precisely by Feldman and Singh [33] in
regard to information theory [86, 103]. Furthermore, this
is a broad area of research in cognitive science especially
Gestalt psychology and perceptive psychology where com-
ponents of objects are analyzed [9, 12, 33, 48, 64, 77, 106].
Gestalt theory has shown (based on the Gestalt principles of
human perception: proximity, similarity, continuity, closure)
that splitting may take advantage of the fact that two sharp
inflections must be aligned before clusters are split [113].
Based on these perceptive principles synthetic images ex-
hibiting object agglomerations can be splitted by an inves-
tigator to be used for comparison with partitions performed
by an algorithm.

1.2 Overview of the Techniques for Splitting Fused
Objects in Digital Images

Overviews of contemporary theories of visual form have
been published by different authors [19, 67, 83, 128]. An-
other point of view of partitioning overlapping objects
which are consequently connected in a projective image is
the completion of each object contours in such a way that for
each object its original boundary is determined [32, 114].

However, complex overlaps of hundreds or thousands of
structures in images where the area of the foreground, i.e.
cells, is larger than the background the decomposition prob-
lem becomes complex. Automatic morphometry [8] of com-
plex cell distributions in histological sections of biologic
material becomes a challenging task in combination with
registration of serial sections [72] because complete cell at-
lases of organs especially brains can be generated. Espe-
cially in the mouse brain this approach is expected to be-
come a cutting edge technology because mice are the most
often used species for genetic modifications like knocking
out or knocking in specific genes inducing different kinds
of effects like morphological changes. These morphological
effects must be recognized, analyzed and compared quanti-
tatively at the cellular level.

Edge filtering in gray scale images (Sobel-, Roberts-,
Prewitt-, Laplace of Gaussian-, zero-crossing-filter) could
be a starting point to perform splitting in images offering
relative strong contrasts of fore- and background. However,
this is not the case in histological images of the central ner-
vous system.

The Hough transform is a related method that carries out
simple shape recognitions, too. These transforms are useful
if particles possess regular shapes (circles or ellipses) [54].
However, morphology based separation can be adapted to
different shapes of aggregated particles as shown by Tal-
bot and Appleton [111]. Aggregates that consists of par-
ticles of certain sizes can be segmented by morphological
approaches. The shape and size of cells in biological speci-
mens may vary considerably: they may appear as two touch-
ing cells or large clusters with many holes, i.e. connected re-
gions of background within an aggregate (Fig. 1b). For such
complex clusters contour based algorithms are used. Mostly,
these algorithms determine centroids of decomposed parti-
cles which are used thereafter for a precise gray scale based
segmentation by the watershed method or region growing.
Contour based algorithms determines dominant points, i.e.
concavities and convexities of the contour and test which
cut path or split path of opposite dominant points turns out
to minimize a cost function.

Performing a skeletonization [14, 30] or thinning of the
background may be useful because the derived endpoints of
the medial axis are related to concavities of the foreground,
i.e. the cell aggregate. These endpoints can be used by an
appropriate chain of morphology techniques to obtain a par-
tition. However, different medial axis transforms of complex
cell aggregates may generate diverse skeleton networks re-
quiring further intricate analysis.

Further methods aim to separate cells by applying active
contours and level sets. A comprehensive overview of the
literature concerning these families of aggregate-particle-
problems and algorithms is given in the following:

• Morphology based procedures [6, 10, 24, 27, 53, 57, 59,
60, 71, 75, 76, 118, 122],

• Contour based techniques [1, 3, 13, 22, 23, 34, 35, 39,
47, 49, 50, 55, 56, 70, 89, 92, 94, 102, 111, 115, 119, 121,
124, 125],

• Active contour based methods [8, 18, 90, 100],
• Graph theoretic approaches/topological maps [15, 41,

42],
• Parametric fitting algorithms [26, 111, 121, 123] and
• Level set approaches [26, 98].

1.3 Decomposition by Means of Polygonal Approximation

The method of Wang [119] was developed originally to per-
form splitting of touching objects in images generated from
projections of small pieces of rocks on a moving conveyor
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belt. The silhouette boundaries of these binarized images
have much in common with contours of aggregates of nerve
cells. Therefore, we implemented this contour based tech-
nique. Because the small rocks analyzed by this method
have rough contours Wang [119] simplifies the contour in-
formation by using polygonal approximation. Such a sim-
plification has the advantage to keep the number of relevant
coordinates of the contour small in order to reduce com-
putation time. Furthermore, a distinction between types of
corners [31, 104] is not necessary after polygonal approx-
imation because graduations of the smoothness of corners
can be reduced in dependence of the grid size. However,
this technique depends strongly on the size of the grid as-
suming that most parts of the aggregates possess a similar
size and contour characteristics. If image size, object sizes
within the image or image resolution changes the grid size
of the polygonal approximation must be adjusted. Beside
this parameters of sizes the grid size depends on the con-
tour characteristics, which have to be adjusted by parameters
like compactness, shape factors and fractal dimension of the
contour. Cell aggregates in the nervous system or other or-
gans may consist of varying sizes of their constituting parts
and have other contour characteristics. Because the decom-
position of aggregates as proposed by Wang [119] strongly
depends on the result of polygonal approximation we found
an adaptive way to filter small concavities and convexities
that are not needed for decomposition at the cellular level
using a scale space approach [16, 73, 74].

Furthermore, contour based decomposition techniques
seem to overcome disadvantages of iterative morphologi-
cal techniques like splitting aggregates by the watershed al-
gorithm [60, 118]. If aggregates are composed of particles
with strong size variations, overlaps intermingled with back-
ground intensities contour information can be evaluated to
obtain information for decomposition. Sometimes the den-
sity of cells varies strongly, however, microscopic illumi-
nation conditions stay constant resulting in an insufficient
illumination with optically fused cells. If the preprocessing
of these images is based on low pass filtered original gray
values and not on a distance transform the watershed result
will produce strong undersegmentations.

1.4 Aims

The objective of this contribution is the presentation of a
new decomposition method that is motivated by the tech-
nique of polygonal approximation published by Wang [119]
that belongs to the class of contour based approaches. Since
we observed some disadvantage of directly applying the
original method of Wang [119] a new algorithm was worked
out that differs principally from other techniques. Firstly, the
curvature scale space decomposition (CSD) can be applied
to images covering object aggregates of different topolo-
gies like multiple connected domains or holes. Secondly,

the problem of dominant concavities that are relevant for
partitioning is approached by considering concavities in a
concavity scale space build by presentations of Fourier co-
efficients of the boundary of the clusters. This new method
leads to reliable partitioning results that need less parame-
ters in comparison to the technique of Wang [119]. In or-
der to present its advantages with regard to a larger class of
partitioning problems different types of test images and real
biological images were used.

The specific aim of this study is to decompose cell ag-
glomerates in order to localize the cell boarders (Fig. 1c, d).
Based on the localization of cell borders in the form of
closed polygons (Fig. 1c, d) the regions can be masked and
intensity distributions of localized cells can be analyzed with
pattern recognition techniques. The result of the partitioning
of systematic modified test images and real biological im-
ages was compared with images in which an expected par-
tition was defined by an investigator to allow comparisons
of the splitting outcomes. At least we present a technique
which optimizes internal parameters and gives rise to an al-
most robust decomposition method.

2 Material and Methods

2.1 Types of Images

For the development and testing of algorithms we used 3
families of images: synthetic images (arte) which are de-
rived partly from IPAN test images (http://visual.ipan.sztaki.
hu/corner/corner_click.html) or Liu and Srinath [62] and
Liu and Sclaroff [63], light microscopic images of cell clus-
ters (cells) [97] and high resolution transparent flat bed
scanned images [96] of histological sections of mouse brains
stained with the modified method of Gallyas (scan) [38, 97].

2.2 Definition of Images

An image can be modeled as a function defined on a rec-
tangle Q = [a1, b1] × [a2, b2] ⊂ R

2. A gray level image has
values in the interval [0,255] where 0 means black and 255
is white. A binary image is a function with only two values
0 (black) and 1 (white). By sampling of an image, one ob-
tains a digital image which can be represented as a matrix
(bi,j )

m,n
i,j=1, with the gray-levels bi,j ∈ {0,1, . . . ,255}. A bi-

nary digital image (bi,j )
m,n
i,j=1 is a matrix with binary entries

bi,j ∈ {0,1}. In this paper, we will consider mostly binary
images.

2.3 Expected Decomposition (ESD)

The expected decompositions are considered as the ground
truth. They have been generated by experts in neurohistol-
ogy to obtain a set of splittings for comparison with the al-
gorithm results. These splittings are made on principles of
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Fig. 1 Illustration of the
decomposition problem.
(a) First sample image with a
superposition of two disjoint
nerve cells (rectangle).
(b) Second sample image with a
strong spatial clustering of cells
(rectangle). (a’) Global
segmentation with the
Otsu-method. (a”) Local
adaptive segmentation.
(a”’) K-means segmentation.
(a””) Mean-Shift segmentation
(same as in b’–b””).
Binarizations are comparable:
the segmentation results lead to
strongly fused cell objects.
(c) Superimposed gray scaled
and binarized cells for which a
decomposition should be found.
At least the cell boundary
should be reconstructed used for
masking and further operations.
(d) Clustered gray scaled and
binarized cells for which a
decomposition should be found
and cell boundaries should be
reconstructed

Gestalt theory. Due to these principles [9, 12, 33, 48, 64, 77,
106] components of objects are analyzed by investigators.
Information along visual contours that is relevant for cogni-
tive subdividing of objects is concentrated in regions of high
magnitude of curvature [7], rather than being distributed uni-
formly along the contour. Attneave [7] indicates that most
shape information is contained in the corners (high curva-
ture points), which allows to characterize the contour. This
has been investigated more precisely by Feldman and Singh
[33] in regard to information theory [86, 103]. Based on the
Gestalt principles proximity, similarity, continuity, closure of
human perception experts were instructed to concentrate on
sharp inflections possessing a topological relation in order
to outline the split paths [113].

2.4 Segmentation of Gray Scale Images and Object
Boundaries

Gray level images were segmented by the global segmenta-
tion method of Otsu [79] followed by an opening and closing
done with a symmetric structure element to remove overseg-
mented small regions resp., fill undersegmented small holes.
As shown in Fig. 1 different segmentation approaches lead

to comparable results. In video microscopic images shading
can be found due to inhomogeneous illumination. This need
to be filtered by a suitable shading correction procedure or
a local adaptive segmentation should be performed. In a bi-
nary image we consider all subsets with value 1. We assume
that there exists finitely many subsets with value 1 which
are (open and connected) C2-domains. Let D ⊂ Q be such
a simple connected C2-domain. Then the boundary of D is a
C2-curve, which can be approximated by a closed polygon.

The coordinates of the contours of connected regions,
resp., objects in binary images were determined and admin-
istered in a cell data type of Matlab (Mathworks). These
boundaries or contours are considered in the following in
more detail because the curvature of a discrete contour will
be used later on.

2.5 Watershed Based Decomposition

Watershed algorithms [69, 88] are a matter of common
knowledge. Therefore, the watershed segmentation is not
explained algorithmically. We applied the watershed decom-
position (WSD) to compare with the approaches developed
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here. Since there exist four basic preprocessing possibili-
ties:

1) directly smoothing the gray level image,
2) distance transformations (chessboard, cityblock, euclid-

ean, quasi euclidean) of a binary segmented image,
3) marker based WSD,
4) internal and external regions approach

for applying WSD (8-connected neighborhood) the euclid-
ean distance transformation of binary segmented images
was used here. Finally, the distance transformed images
were smoothed by a 5 × 5 median filter. In the last section,
the WSD results will be presented first followed by the re-
sults of the new techniques.

2.6 Geometric Approach

2.6.1 Definitions of Polygon, Boundary Curve, Curvature
and Compactness

A closed polygon with the vertices Pk ∈ Q (k = 0, . . . ,

n − 1) is the union of line segments

P0P1 ∪ P1P2 ∪ . . . ∪ Pn−1P0,

which forms a positive oriented, simple closed curve (with-
out double points). The interior of the closed polygon is a
polygonal domain that approximate a single connected C2-
domain D. The closed polygon is oriented so that by cir-
cumscribing in positive orientation the interior lies at the
left-hand side. The arc length of the closed polygon is equal
to

n−1∑

k=0

|Pk − Pk+1| (Pn := P0)

A closed C2-curve X : I → Q with the parameter presenta-
tion X(t) = (x(t), y(t)) with (t ∈ I ) fulfills the following
conditions: x ∈ C2(I ), y ∈ C2(I ) with x(k)(a) = x(k)(b),
y(k)(a) = y(k)(b) (k = 0,1,2) and (x′(t))2 + (y′(t))2 > 0
∀ t ∈ I = [a, b].

If X is the boundary curve of a single connected C2-
domain D, then this curve is simple closed without double
points. The arc length of the restricted curve X | [a, t] (t ∈
[a, b]) is given by

s(t) =
∫ t

a

((x′(u))2 + (y′(u))2)1/2du (1)

such that s(b) = P is the perimeter of D. The area of D can
be computed by

A = 1

2

∫ b

a

(−y(t) x′(t) + x(t) y′(t))dt. (2)

Fig. 2 The arrow indicates the positive orientation of the curve. The
black tangent passes a convexity with χ(t) > 0 and the gray tangent
passes a concavity with χ(t) ≤ 0

We consider only simple closed polygons, i.e. closed poly-
gons without double points. Passing the polygon in the
mathematical positive direction (anticlockwise, Fig. 2), the
interior lies always on the left side. A vertex Pi is called
convex, if the interior angle between

−−−−→
PiPi−1 and

−−−−→
PiPi+1 lies

in [0,π]. Here, we set P−1 := Pn−1. In the other case the
vertex is concave.

The curvature χ of the curve X at t ∈ I1 can be calcu-
lated by

χ(t) = x′(t)y′′(t) − x′′(t)y′(t)
[(x′(t))2 + (y′(t))2]3/2

. (3)

Passing the curve in the anticlockwise direction then curva-
tures are positive for convexities and nonpositive for con-
cavities (χ ≤ 0)

If a connected region with perimeter P and area A (see
(1)–(2)) has the compactness

C = P 2

4πA
< 0.8, (4)

then it will be processed further because such a region con-
sists of multiple connected objects and should be parti-
tioned. A C of 0.8 turns out to be a suitable threshold for
selecting only those objects in microscopic images of the
central nervous system which need to be splitted.

2.6.2 Polygonal Approximation

A polygonal approximation is a transformation of a planar
polygon into a polygon of less vertices. The digital bound-
ary can be approximated with arbitrary accuracy by a poly-
gon. The requirements are that the resulting polygon can be
reconstructed by a few dominant points and that the princi-
pal structure of the contour should be conserved. During the
last 30 years many heuristic algorithms have been consid-
ered for approximation of polygonal curves [51, 108]. About
a dozen of different heuristic approaches to the problem
can be accounted, and the number of algorithms exceeded
one hundred items [52]. In some extent, the existence of a
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Fig. 3 Convex hull of the polygon

big amount and variety of the heuristic approximation algo-
rithms can be explained by the variety of tasks, curve types,
and error measures in use.

The most often applied approximation algorithm is a
heuristic method called the Douglas-Peucker algorithm [28].
This iterative procedure repeatedly splits the curve into
smaller and smaller curves until the maximum of the per-
pendicular distances of the points on the curve from the line
segment is smaller than a certain error tolerance.

Here, we performed a quad tree decomposition of the
contour followed by determining which contour points
found by quad tree decomposition are lying inside, outside
or on the contour [43]. To facilitate the detection of domi-
nant points the contour is analyzed in terms of the Freeman-
Chain-Code. We end up with a minimum-perimeter-polygon
(MMP) presented by coordinates. The MMP presents the
fewest vertices possible to capture the “essence” of the
boundary shape. The list of points used for approximation
of the polygon is Lapp .

2.6.3 Concavities and Convexities of the MMP

Concavities and convexities are determined by evaluating
Lapp . For this the points Pi and Pi+2 are connected. On the
resulting line segment the midpoint Ti for each pair of points
(Pi,Pi+2) is determined.

Ti = 1

2
(Pi + Pi+2) i = 0, . . . , n − 1 where we set

Pn = P0 and Pn+1 = P1.

If the midpoint lies on the contour line or within the poly-
gon, then a convexity is given, otherwise a concavity. The
resulting list of concavities Lcon need to be classified to find
corresponding points for the construction of split paths. On
this the convex hull is constructed whereby vertices of the
convex hull are connected with the corresponding point K

of the concavities. Hence, we obtain the angle α enclosed by
the two line segments Lv and Lh (Fig. 4) whereby Lmax =
max(|Lv|, |Lh|) between the vertices and the inclination
point and the relative distance Ld = ||Lv| − |Lh||/Lmax of

Fig. 4 Segment lines Lh and Lv passing K

the line segments. Ld turns out to be a measure for the sym-
metry of the concavity with 0 ≤ Ld < 1. To evaluate these
values the following thresholds were applied:

• angle thresholds α1 and α2 with 0 < α1 < α2 < π .
• length thresholds L1 > 0 and L2 > 0.
• relative difference threshold L3 ∈ [0,1].
The order of a concavity is obtained after classification of
the values by the thresholds:

• 1, if α2 < α < π .
• 2, if α1 < α ≤ α2 and Lmax ≤ L1 and Ld > L3.
• 3, if α1 < α ≤ α2 and Lmax > L1 and Ld ≤ L3.
• 4, if α ≤ α1 and Lmax ≤ L2.
• 0, in all other cases.

As proposed by Wang [119] the following thresholds
were used: α1 = π

2 , α2 = 5
6π , L1 = L2 = 20 units of length

(LE) and L3 = 0.6.

2.6.4 Constructing Split Paths

Furthermore a cost function needs to be introduced to de-
cide which split paths should be applied. As a starting point
the vertex with the maximal concavity order is used. If there
exist more than one maximum, the first maximum of Lcon

is considered. The line segments of a concavity can be elon-
gated until they intersect with two other opposite parts of the
polygon:

gi : 	x =
(

Vi,1

Vi,2

)
+ s

(
Ki,1 − Vi,1

Ki,2 − Vi,2

)
(line segmentLv)

hi : 	x =
(

Hi,1

Hi,2

)
+ t

(
Ki,1 − Hi,1

Ki,2 − Hi,2

)
(line segmentLh)

Here, gi and hi designate the equations of lines. For each
concavity Ki there exist two points Vi and Hi which mark
points of two vertices which pass opposite parts of the poly-
gon. In between the resulting opposite intersection points we
search for the corresponding opposite coordinate of the split
path. The intersections of gi and hi with the polygon are
calculated

ej : 	x =
(

Pj,1

Pj,2

)
+ u

(
Pj+1,1 − Pj,1

Pj+1,2 − Pj,2

)
for j = 0, . . . , n
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and the whole boundary with j = 0, . . . , n is passed through.
For each j we obtain the intersections by

(u, s) = (Vi,1 − Pj,1,Vi,2 − Pj,2)

×
[
(Pj,1 − Pj,2) (Pj+1,1 − Pj+1,2)

(Ki,1 − Vi,1) (Ki,2 − Vi,2)

]−1

(u, t) = (Hi,1 − Pj,1,Hi,2 − Pj,2)

×
[

(Pj,1 − Pj,2) (Pj+1,1 − Pj+1,2)

(Ki,1 − Hi,1) (Ki,2 − Hi,2)

]−1

If the intersection point lies in between Pj and Pj+1 the
opposite point for the split path is found. On this, the dis-
tance between the intersection points is determined:

d(P,Q) = |P − Q|.
The remaining concavities in the two regions A and B are
those which are preserved after splitting and which are used
for subsequent splittings. We set C = 0 if the remaining con-
cavities in A and B are uneven, C = 1 if the number of
concavities in A or B is even, C = 2 if the number of con-
cavities in A and B are even. The splitted regions have the
areas AA and AB , see (2). The ratio of areas rA(a) is the
quotient of the minimum of AA and AB and the maximum
of AA and AB :

rA(a) = min(AA,AB)

max(AA,AB)
.

Because it is not necessary to use for each class of concav-
ities all parameters the following selections lead to robust
classification results:

• deg(S) = order of the starting point
• deg(E) = order of the feasible end point
• opo(S) = segment in between the intersections of Lv and

Lh with the opposite part of the polygon that can be used
for search of s

• min(C) = minimum of C

• min(d) = minimal distance of different feasible end
points

• max(r) = maximal relative area of different feasible end
points

2.7 Concavity Scale Space Approach

Using contour smoothing on a certain level scale regions can
be analyzed independent of their size and their contour fea-
tures like roughness or fractal dimension [21, 40, 61, 65, 87].
Furthermore, flat concavities that are important in the case
of cell clump splitting are approximated by polygonal ap-
proximation to straight lines. Therefore, it turns out to be
important to work on the original contours. However, small

concavities which contribute to the phenomenon of rough-
ness should be smoothed.

First of all, we used the curvature (3) of the contour as in-
troduced before for classifying concavities. Let D ⊂ Q be a
simple connected C2-domain. The boundary of D is a sim-
ple closed C2-curve X : [a, b] → Q with the parametriza-
tion X(t) = (x(t), y(t)) whereby t ∈ [a, b].

We need an approximate computation of the first and sec-
ond derivatives of x(t) and y(t) for the determination of the
curvature (3) of X. Here, we use symmetric difference quo-
tients

x′(t) ≈ 1

12h
(x(t − 2h) + 8x(t − h) − 8x(t + h)

+ x(t + 2h)), (5)

x′′(t) ≈ 1

12h2
(−x(t − 2h) + 16x(t − h) − 30x(t)

+ 16x(t + h) − x(t + 2h)) (6)

with sufficiently small h > 0. Analogously, we approximate
y′(t) and y′′(t).

Beside the calculation of curvature a suitable and invari-
ant smoothing operation that works on a contour [16, 74]
was realized by considering the contour in the complex
plane [85]. Traveling anti-clockwise along this curve keep-
ing constant speed, a complex function k(t) is obtained,
where t can be considered as a time variable. The contour
with the perimeter P is interpreted as a P -periodic function
with regard to the arc length t :

k(t + P) = k(t) (t ∈ R).

The Euclidean plane R
2 can be considered as a complex

plane C:

k(t) = x(t) + iy(t) (t ∈ R).

If k is sufficient smooth, then the Fourier series of k con-
verge uniformly to k.

k(t) =
∞∑

k=−∞
ck · eikωt

(
ω := 2π

P

)

Then it follows that k(t) can be approximated by a trigono-
metric polynomial of order N/2 (N � 1 even):

k(t) ≈
(N/2)−1∑

k=−N/2

ck · eikωt .

The coefficients ck are denoted as Fourier coefficients. The
vector of Fourier coefficients is the Fourier descriptors of
the contour.

ck = 1

P

∫ P

0
k(t) · e−ikωtdt.
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Table 1 Survey of used parameters for the end point selection, resp. the opposite point of a concavity for split path generation

deg(S) 4 4 4 3 3 3 2 2 1

deg(E) 4-3 2-1 0 3 2-1 0 2 1 1

opo(S) use use use use use use use use use

min(C) use use use use use use use

min(d) use use use use use use

max(r) use use use

A ≥ TA use use

To calculate the coefficients, the function k(t) is sampled at
N points j

N
P (j = 0, . . . ,N −1). The outcome of this is the

following representation:

k

(
j

N
P

)
=

(N/2)−1∑

k=−N/2

c̃k · eik 2π
P

j
N

P (j = 0, . . . ,N − 1).

The discrete Fourier transformation (DFT) for c̃k is:

c̃k = 1

N

N−1∑

j=0

k

(
j

N
P

)
· e−2πikj/N

≈ ck

(
k = −N

2
, . . . ,

N

2
− 1

)
.

If N is a power of 2, the fast Fourier transformation (FFT)
can be applied.

In order to use for different images resp. objects compa-
rable orders of smoothing the following normalization for
the reconstruction of the contour by Fourier coefficients was
used:

scale =
⌊

N · G
100

⌋
. (7)

Here, scale means the even number of Fourier coeffi-
cients that is used for the contour reconstruction, N is the
number of contour coordinates and G is the order of smooth-
ing. By using only a few coefficients of the descriptor the
contour can be reconstructed and essential concavities fil-
tered by the parameter scale. A reconstruction by increasing
numbers of Fourier descriptors is shown in Fig. 5 and the
scale space representation in Fig. 6.

2.7.1 Dominant Concavities and Cost Functions

Using a threshold for selecting a scale invariant smoothing
we are able to filter dominant concavities which are rele-
vant for planar shape partitioning. A subsequent step is the
evaluation of feasible end points of a starting concavity. The
evaluation is realized by comparing the possible areas AA

and AB after splitting with a suitable threshold. If one area
is smaller, the threshold of the related end point is removed

from the list of end points. If no end point remains in the list
after evaluation, the splitting is terminated. Otherwise the
relative length is calculated, whereby S is the starting point
and E is the end point in between them and a solid line is
constructed generating the two areas A and B with perime-
ters PA and PB . The relative length is the quotient of the
distance between S and E and the minimum of PA and PB

(cost function 1):

drel(E) = d(S,E)

min(PA,PB)

A threshold of 0.35 guarantees that all regions have a
perimeter larger than 2|S − E| = 2d(S,E). The cost func-
tion 2 evaluates the lengths of S to all possible end points
and a certain end point is selected which has the smallest
distance to S. Furthermore, it is necessary to control if in-
tersections of the splitting path with the curve occurs be-
fore the end point is reached. In such a case the end point
with the next smallest distance is selected. If all end points
do not fit the two cost functions, cost function 3 is applied:
The threshold for areas is tested and the maximum of cur-
vature of the remaining points is determined whereby those
points are selected where the curvatures are larger than 1/4
of the maximal curvature. The end point is calculated via
the smallest distance of S to the opposite part of the curve
and controlled for intersections with the curve before reach-
ing the end point. If no end point can be determined the
region is considered as non partitionable with respect to
the criteria defined here and to perceptual grouping or bio-
morphological experience.

2.7.2 Double Connected Domains

Furthermore we must take double connected domains (do-
mains with one hole) into account, since background ar-
eas enclosed by foreground may facilitate the partitioning
of regions with large areas. Holes are determined by filling
regions and subtracting images of filled regions from im-
ages without filled regions. If holes occur the connected re-
gions are counted and administrated in a list Lhole of coordi-
nates Hi . Holes are evaluated if they can be integrated into
split paths. Hence, the length of the segment SE with all
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Fig. 5 Smoothing by reducing
the number of Fourier
descriptors (AF = Number of
Fourier descriptors)

contour points of a hole are determined. The same is done

with E and the contour points of the hole. This is repeated

with all holes. A hole is integrated into a split path if

d(S,Hi) + d(E,Hj ) <
d(S,E)

2
for i, j ∈ {1, . . . ,M}

and Hi,Hj ∈ Lhole

by minimizing the distances:

min{d(S,Hi) : Hi ∈ Lhole (i = 1, . . . ,M)}
min{d(E,Hj ) : Hj ∈ Lhole (j = 1, . . . ,M)}
The coordinate list of the contour of the hole need to be par-
titioned according to the two new points Hi , Hj and com-
bined with the second part of the region contour. Before this
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Fig. 6 Concavity scale space representation of the example shown in
Fig. 5. The ordinate presents the number of used Fourier coefficients
for reconstructing the curve and the abscissa the index t of the curve.
The points in the coordinate system are indicating the number of con-
cavities at a certain scale, respectively, the number of Fourier coeffi-
cients used for reconstruction. Deep or strong concavities are repre-
sented by high stacks of points which can be reconstructed by a few
Fourier coefficients

can be done it is necessary to determine the orientation of
the coordinate lists and to adapt them all into the same di-
rection (clockwise sorting). Finally, the original coordinate
list of the integrated hole is removed. This method can be
also applied to connected domains with several holes.

3 Results

In the following the results of the polygonal approxima-
tion based decomposition (PAD), the concavity scale space
based decomposition (CSD) and the watershed based de-
composition (WSD) in consideration of the expected de-
compositions (EXD) are presented.

3.1 Watershed Based Decomposition (WSD)

There exist four principal preprocessing possibilities before
the watershed algorithm is applied to an image:

1) binarization and calculating the distance transform,
2) smoothing the gray level image,
3) calculating the gradient image,
4) applying WSD to an image composed of inner and outer

markers.

In order to facilitate the comparison gray level images were
binarized followed by the distance and the watershed trans-
formation.

The WSD leads to satisfying results if regions of an ob-
ject do not exhibit too strong overlaps Fig. 7c, g, ä and
Fig. 8c, f, i, l, o, r, u. However, even simple compositions
of subregions like four overlapping objects Fig. 7k or small
subregions positioned around a relative large area Fig. 7o, w
can not be separated by the applied WSD. Furthermore, if
the objects contain concave holes the WSD results are not
optimal (Fig. 8o, r, u).

3.2 Polygonal Approximation Based Decomposition
(PAD)

The PAD was applied to images without holes. The de-
composition domain of PAD are clearly objects that have
many corners or discontinuities (Fig. 7e, m, q, u). Since ob-
jects contain deep and smooth concavities this method fails
(Figs. 7i, 8a). Importantly, even if objects possess relative
small corner-like concavities in regard to a large area of an
object the PAD yields to acceptable results due to the con-
cept of oppositeness of a concavity to be selected for a split-
ting path. This concept may lead to problems as shown in
Fig. 7j where long split paths are preferred by the algorithm
and not the cutting of relative small convexities of the object.
At least it should be emphasized that the edge like appear-
ance of the contours of the objects processed by the PAD
which is visible especially in Fig. 7m, q and u derives from
the approximation method.

3.3 Concavity Scale Space Based Decomposition (CSD)

3.3.1 Artificial Objects

The CSD approach turns out to subdivide objects possess-
ing strong corners, continuous concavity mixtures and small
convexities of their contours with respect to the area of the
object. The parameters used by the CSD approach are the
area, the curvature, the approximate distance, the radius for
symmetric opening and the resizing factor for changes of the
image size. A constant size of 3 × 3 of the median filter as
a preprocessing step turned out to be optimal with regard to
the smoothness of the curve. The parameters used for parti-
tioning the binary images in Figs. 7–10 are listed in Table 2.

Simple regions like Fig. 7b, f, j are partitioned as pro-
posed by EXD. In Fig. 7n and v the subdivision shows the
tendency of generating split paths to the opposite contour
which yields to relative long split paths. Such long split
paths are avoided in the EXD partitioned objects due to sub-
divide harmonic which means generating subregions of sim-
ilar size and split paths meet at almost rectangular angels. If
the objects are elongated like those in Figs. 7r and 8b, CSD
leads to optimal results.
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Table 2 Parameters used for partitioning the images in Figs. 7–10 using the CSD approach. The first column Image in Fig. indicates the name of
the subfigure. The parameters are described in Sect. 2.6.1

Image in Fig. Area Curvature Distance Resize Opening

7b 50 0.3 1 1 3

7f 50 0.3 1 1 3

7j 200 0.1 1 1 3

7n 100 0.1 1 0.75 3

7r 65 0.1 2 0.5 3

7v 50 0.07 2 0.75 0

7z 65 0.07 2 0.5 0

8b 50 0.18 1 0.75 3

8e 65 0.07 2 0.5 0

8h 50 0.07 2 0.5 3

8k 65 0.07 2 0.5 3

8n 30 0.07 2 1 0

8q 30 0.07 2 1 0

8t 30 0.07 2 1 0

9b 50 0.1 2 0.5 3

9f 50 0.2 1 0.75 3

9j 8 0.1 1 0.25 3

9m 8 0.1 1 0.25 3

9p 35 0.1 1 2 2

9t 11 0.1 1 2 2

9x 11 0.15 1 2 3

10d 8 0.05 1 0.25 3

10f 18 0.15 1 0.4 3

The CSD algorithm is working robust on all changes of
topology (Fig. 8e, h, k, n, q, t) of the object (Fig. 7z) with
multiple continuous concavities. Starting with Fig. 7z the al-
gorithm splits principal domains of convexity and performs
internal splits of the object, too. The EXD result of this ob-
ject shows a stronger orientation at the principal concavities
and preventing at the same time a relative long split path sep-
arating the object in two large parts as presented in Fig. 7z.
Introducing holes into the object yields to a stable incorpora-
tion of these topological background information. Figure 8e
has obtained a rather similar partition as the EXD in Fig. 8g.
Three overlapping holes (Fig. 8h) at the same position in the
object as in Fig. 7e lead also to a similar result as shown in
the proceeding Fig. 8e. If these holes are distributed within
the object the splittings stay stable and are similar to those
calculated in Fig. 8e and h. Splitting the object with a con-
cave hole allows the generation of new split paths which
are rather similar to the EXD result. Adding two new holes
around the same concavity location as in Fig. 8n within the
object Fig. 8q gives rise to a comparable result as in Fig. 8n.
This means that the CSD approach can deal with complex
topologies maintaining the principal pattern of split paths. If
we go further and introduce an object into the concave hole

of the outer object Fig. 8t the CSD remains stable and split
paths are still comparable as those found before on the same
object with less topological complexity.

Applying CSD to the images of Liu and Srinath [62]
(Fig. 9b, f) leads to satisfying partition results. However,
small convexities are still connected to the larger mass of
the object.

3.3.2 Video Microscopic and High Resolution Scan Cell
Images

The images containing cells of the dentate gyrus (Fig. 9i, l)
of a human brain were processed after segmentation. Several
disjoint objects are covering the images which was directly
transferred to the CSD algorithm meaning that the imple-
mentation can cope even with multiple non-connected ob-
jects. The objects are analyzed by the compactness parame-
ter (4) in order to initialize a partitioning. Therefore, only
objects covering stronger concavities of their contours are
processed. Most of the cell areas as shown in the EXD im-
ages (Fig. 9k, n) are recovered. Three portions with strongly
juxtaposed objects delimited by very low concavities are un-
derpartitioned (Fig. 9j). The large cell cluster with a cen-
tral hole in Fig. 9m shows an appropriate partitioning. The
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Fig. 7 Results of partitioning
by polygonal approximation
decomposition (PAD, in the first
column), concavity scale space
decomposition (CSD, second
column), watershed
decomposition (WSD, third
column) and expected
decomposition (EXD, last
column). The latter was realized
by an evaluator. Here, all objects
are shown without holes. In (p),
(t) and (x) are examples
presented with mixtures of
corners and continuous
concavities. The WSD of (k),
(o) and (w) do not lead to a
partitioning of the objects

result of the CSD approach is presented in Fig. 10d and
the expected objects in Fig. 10b. Comparing the CSD re-
sult of Fig. 10d to Fig. 10c of the WSD method shows ob-
vious problems of the WSD technique at cell clusters with
strong overlaps. Only those cell assembles that do not over-
lap strongly are partitioned optimal. Small and few overpar-
titions can be seen also.

A cell cluster of the video microscopic image have been
processed without surrounding objects and cell clusters
(Fig. 10g) by the PAD and the CSD methods (Fig. 10e, f). As

in other examples the PAD algorithms show the tendency to
generate very long split paths to opposite concavities of the
contour. Furthermore, strong deviations with regard to the
size and shape of disassembled objects are obvious. In con-
trast, the CSD approach has retrieved almost all expected
components of this cell cluster.

The examples derived from high resolution transparent
flat bed scanning of the mouse brain (Fig. 9o–z) show in
the WSD (Fig. 9q, u, y) strong undersegmentations. Apply-
ing CSD the retrieval of those objects that were expected
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Fig. 8 Results of partitioning
by polygonal approximation
decomposition (PAD, in the first
column), concavity scale space
decomposition (CSD, second
column), watershed
decomposition (WSD, third
column) and expected
decomposition (EXD, last
column). PAD is only applied to
the object shown in the first row
because the algorithm was
realized for simple connected
regions

(Fig. 9r, v, z) yields to rather similar results. In Table 2 all
parameters for the CSD approach that were applied to the
images are presented. Images of the same category, for ex-
ample, images derived from the high resolution transparent
flat bed scanning of the mouse brain (Table 2: 7p, 7t, 7x)
share the same range. The same holds true for the video
microscopic images (Table 2: 7j, 7m). The artificial objects
share the same range. However, according to the parameters

in Table 2 the images 5j and 5n have been segmented with
rather large thresholds of the parameter area in comparison
to the other objects.

3.3.3 Parametrization of CSD

The parameter space of the cell cluster in Fig. 10f have been
explored. The parameters area and curvature are sensitive to
the expected size and number of splitted objects. If the pa-
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Fig. 9 The first two rows (fish,
airplane) are organized as
follows: (a) PAD first column,
(b) CSD second column,
(c) WSD third column and
(d) EXD fourth column.
Subfigures (i) and (l) depict
images captured by a video
microscope and exhibiting cell
clumps or optically fused
neurons of the dentate gyrus.
The binarized images were
partitioned (j) and (m) by CSD
with parameters as documented
in Table 1. The EXD is shown in
(k) and (n). Subfigures (o), (s)
and (w) are showing binarized
cell clusters derived from the
high resolution flat bed scanned
mouse brain. The EXD results
are shown on gray level images
(r), (v), (z) belonging to the
CSD partitions (p), (t), (x). The
corresponding WSD results are
presented in (q), (u) and (y)

rameter area is small, e.g., in a range of 5–10 more objects
will be splitted. If the curvature is small, e.g. in the range of
0.01–0.05 more objects will be splitted as well. Therefore,
the parameter area should be determined in a pilot study,
then the curvature have to be adapted to obtain appropri-
ate split paths. The size of the opening operation is suitable
to split elongated objects at the border periphery of a cell
cluster. The size of the used symmetric structure element
for the opening procedure must be chosen in dependence
of expected object sizes. Cell clusters consist of almost el-

lipse shaped objects possessing more symmetry in contrast
to the parts of the object in Fig. 9b. In this case the parame-
ter should be set to 1. If the symmetries of the components
are not to strong then this parameter should be 2. Therefore,
parameters should be chosen in dependence of expected ob-
ject sizes, structure of the cluster margin and the symmetry
of singular objects. This means, only a few and efficient pa-
rameters are necessary to obtain an optimal splitting of cell
clusters. Exploring the parameter space leads to a smooth
increase of the number of objects and a smooth decrease of
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Fig. 10 EXD images contain
circles or ellipses. (a) Video
microscopic image. (b) EXD.
(c) WSD. (d) CSD. A cell
cluster from the upper right
corner of (a) has been
disassembled with PAD as
shown in (e) and with CSD
in (f). Parameters cf. Table 2

the area and boundary of the splitted structure. Most impor-
tant of the parameter exploration was the observation that no
jumps in the number or size of splitted objects occur.

4 Discussion

4.1 Watershed and Polygonal Approximation Controlled
Decomposition

The results of the two familiar approaches contour based
decomposition (PAD) [13, 22, 23, 55, 56, 70, 89, 94, 102,

111, 115, 119, 124], and the watershed based decomposition
(WSD) [11, 24, 57, 76, 117, 118] clearly exhibit more differ-
ences to the expected decompositions (EXD). We are aware
of the problems concerning this way of evaluation because
a quantitative comparison of segmentation results by using,
e.g., the Hamming distance [37], the rank index, the global
consistency error, the variation of information or the bound-
ary error displacement would elevate the objectivity. These
measures are suitable for benchmarking segmentation tech-
niques, however, here we concentrate on splitting algorithms
and differences to basic approaches like the watershed pro-
cedure.
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The PAD can be applied successfully to object composi-
tions with strong concavities or corners. Especially, shapes
that are elongated or where objects are clustered in a chain-
like manner can be partitioned efficiently by the PAD. The
result of the PAD algorithm is strongly dependent on the
granularity of the polygonal approximation. This depends
on the size of the object as well as on the size of the image.
The WSD is modified, optimized to the specific object seg-
mentation problem and applied by most investigators [4, 11,
20, 24, 29, 57, 66, 76, 116–118]. Since the WSD can be ac-
cessed easily because it is implemented in many software
packages for image analysis it became popular for many
investigators. However, this approach has limitations in re-
gard to cell clusters composed of cells with large differences
of cell areas, shapes and center-to-center distances that are
smaller than the radius of the assembled objects [57]. Here,
we observed problems in terms of holes within clusters of
objects. If juxtaposed objects share larger overlapping re-
gions WSD becomes less effective. An obvious advantage
of the WSD is the applicability to different kinds of pre-
processed images. At least WSD can be easily adapted to
multidimensional partition problems [58]. Since we aim to
solve partitions of strongly clustered cells of different size
and shape which may come up to huge and highly complex
clusters the WSD is not suitable in terms of reliability.

4.2 Scale Space Based Decomposition (CSD)

It turns out that the new approach, i.e., the concavity scale
space based decomposition (CSD) offers some important
advantages with regard to partitioning of objects covering
features of

• convex and concave corners,
• convex and concave curves,
• geometric hierarchies of concavities and convexities, and
• domains with holes within clusters of objects.

An important feature of the CSD is its reliability with re-
gard to similar split paths if holes are added to the same clus-
ter of objects. It was shown that objects with strong concav-
ities like the example of the binary airplane and the binary
fish result in partitions that are rather similar like those de-
rived from EXD. An disadvantage seems to be the adjustable
space of parameters. However, in the case of cell clusters in
biological tissues repeating patterns of object compositions
appear which restricts the space of parameters considerable.
A nonparametric version or self adjusting version of the cur-
rent CSD could be acquired by (1) developing a new contour
or shape analysis and (2) considering further formalizable
heuristics of cognitive-psychologic analysis of partitioning
object shapes [25, 99, 105, 107]. So far, a 3D extension of
the CSD is not available whereby the WSD technique can be
adapted easily to 3D splitting problems. The generation of

split paths within a certain scale results in slight dislocation
with regard to details of regions after applying them directly
to the original object cluster. However, such dislocations are
small and do not lead to wrong locations of partitioned ob-
jects within an object cluster. Therefore, this phenomenon
can be disregarded. It is now clear that, in addition to strong
overlaps of regions holes within regions can be integrated
into split paths. This observation suggests, that compared
to other studies the CSD approach has some principal ad-
vantages concerning partitioning of clustered regions with
emerging complexity. At this point of time, however, it has
not been possible to identify clearly separate cells in huge
clusters of several thousands of cells each composed of a few
pixels which are derived from high resolution flat bed scan-
ning. Therefore, this issue is considered currently by devel-
oping pre-partitioning steps and paralleled algorithms. We
believe that the CSD approach, while not definitive, will pro-
vide a useful framework for future investigation of strategies
of decomposing highly complex aggregations of biological
cells.
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