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II. The differentiated topological distribution of certain neuron
type arrangements
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Summary. Several mathematical procedures have been
worked out for describing quantitave arrangements of
neurons, and especially subpopulations of neurons, in the
human putamen. Visual point field analysis is a newly
developed method for the qualitative recognition of the fuz-
zy clustering of types of neurons. Nearest neighbourhood
analysis is an established procedure in stochastic geometry
and image analysis. These cluster-analytical methods make
possible the determination of local neuron topology. They
represent an extension and application of the point pattern
analysis (Diggle 1983), and are used here to calculate the
statistical significance of certain arrangements of cells.

The application of all these methods together revealed an
interesting neuronal arrangement: type 1 neurons tend to re-
main at a certain distance from other type 1 neurons,
whereas type 6 neurons lie close together.

Key words: Putaman — Human — Topology — Mor-
phometry — Point pattern analysis — Neuron arrangements
— Cytoarchitectonic — Structural evaluation — Cluster
analysis — Stochastic geometry — Spatial distribution

Introduction

So far only a few studies have been reported in which struc-
tural parameters between cells have been systematically
determined (Mariani et al. 1984; Braendgaard and Gun-
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dersen 1986; Benes et al. 1987; Rother et al. 1987; Ranke et

al. 1989). These structural parameters are essential for the

characterization of assemblies of cells.

The quantitative investigation of spatially distributed ob-
jects, e.g. neurons, is generally called stochastic geometry
(Rogers 1974; Harding and Kendall 1974; Davis and
McCullagh 1975; Getis and Boots 1978; Tautu 1984; Upton
and Fingleton 1985; Stoyan et al. 1987; Boker 1987; Mecke
et al. 1990; Karr 1991; Kdénig and Schmidt 1992; Stoyan
1993; Ambartzumjan et al. 1993). We used certain well
known applications of the stochastic geometry which were
developed by Diggle (1983), and also describe here other
methods of quantifying spatially distributed objects.

We have called this analytical approach structure analysis
(SCA) because we used it to investigate the spatial distribu-
tion of structural elements. In this case the neurons or other
cells are the elements, and their distribution in the tissue is
the structure,

Generally we used only a few procedures of the stochastic
geometry. For the sake of completion, we include further
techniques which are usefull for investigating biological
material. The data may consist of morphometric variates or
be obtained from video images.

1. Texture analysis is used to describe the periodicity of
structures on the surface, or in sections of biological
specimens.

2. Point pattern analysis, a subdivision of stochastic
geometry, can be used to characterize the statistically fuz-
zy distribution of various types of cells.

3. Tesselation methods (Voronoi, Delauny) are also used in
stochastic geometry for modelling and for quantitative
characterization of static and dynamic intercellular
regions.

4, Multivariate statistics, including in particular the dif-
ferent models of cluster analysis, is available for deter-
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ming discretely distributed entities within histological
specimens.

5. The techniques of fuzzy logic pattern recognition make it
possible to detect specified point arrangements or cell
distributions. '

6. Artificial neural networks can be constructed for the
recognition of typical features within point patterns.
We have found these methods of great importance for

anatomical research and, in particular, for quantitative

cytoarchitectonics of nervous tissue, By means of SCA we
have been able to find parameters for the quantitative
description of complex structures such as cellular ar-
rangements, and to compare normal, with pathological and
developing tissues.

In addition we discovered neuron compositions which
provide an insight into the possible functional interrelation-
ships of certain arrangements of cells.

Material and methods

In a previously published section of this article (Schmitt et al.
1995), we described the specimens, staining methods and mor-
phometric technique employed for investigating 27 human
putamina. In 14 of these the investigation involved 7 entirely dif-
ferent types of neuron.

The basic stereologic parameters having been calculated by a
modular developed Pascal program (MORPHON) on x86 PC's
equipped with MS-DOS®. These were used for the quantitative
evaluations about to be described.

The terms ‘points’ and ‘events’ used here refer to ‘cell’ or
‘neuron’.

Weighted coordinates of the different types of neuron (original
data = observed data: OD) were plotted before using SCA, in order
to get a visual impression of the distribution of the types of neuron
{Haug 1979). Examples of these are shown in Fig. 2, and will be
described later (see ‘“Results’’).

These plotts were then used to identify the local distribution of
certain types of neuron. This technique is known as visual point
Jield analysis (VPA). The results of such analysis are shown in
Fig. 2 and will be described later. The second stage of the SCA
methods is known as nearest neighbourhood analysis (NNA). The
cell gravity centers of the neuron types are again used, but in a com-
pletely different manner from that of VPA. Each neuron is
iteratively combined with every type of cell separately. Such a com-
bination of two objects (in this case two neurons) is described in
mathematical terms as ‘n-tuple’ (n = 2 if only two neurons are
combined). Here the term refers to the relationship of one type of
neuron (x) to another type (y). This also includes a tuple of iden-
tical types: e.g. tuple 11 is a combination of a type 1 with another
type 1 neuron of the same type.

Only the least distance between two neurons is stored. With these
values we examined statistically the frequency of cell types in every
nearest neighbourhood, including the tuple within the same
population. We also determined the neurons within the tuple were
lying significantly closer together than to those of any other tuple.
For example, are the type 6 neurons lying closer to each other than
to type | neurons?

Equation (1) was used to estimate the distance to the nearest gravi-
ty center. In order to examine the kind of cell distribution, the OD

were compared with pseundorandomized cell populations of equal
size (RDC: randomized data of cell gravity center). The differences
between OD and RDC were compared by the Dixon-Mood-test
(DMT), the Kolmogoroff-Smirnoff-test (KST) and the U-test, with
NULL-hypothesis of a randomized neuron distribution.

We also examined the vicinity between the gravity coordinates of
different tuple by neighbourhood ciuster analysis (NCA) and con-
tact cluster analysis (CCA) (Fig. 1), using a different method of
combination (Schmitt 1991). We introduced the symbol V to repre-
sent a feature vector of the measurement for every single neuron.
This includes the gravity center, maximal diameter, projection area
and spherical index. The latter provides a parameter for deviation
of the real shape from an ideal circle. It is a product of the
planimetric area and the cell diameter.

The feature vector V: (x.,y) is combined with every other cell
feature vector. We systematically selected neuron types which we
did not exspect to be randomly distributed.

The basic distance B; (or in vector form: d(V;; V))) is calculated
by using formula (1) and represents Euclidean distance. These
values of the OD were compared with three artificially generated
cell distributions. We used mainly the RDC randomization, which
contains the same total number and type of neurcns within the
same evaluation area, but randomized gravity centers.

The separate randomization of the diameters (RDD), and of the
diameters and the gravity center (RDDC) together, is only used
within one cycle of the cluster analytical procedure. We naturally
randomized the diameters only in the maximum-minimum range of
each population. This was done in order to find out whether the
diameters are important components of the cellular arrangement.

B = d(Vi; V) = VX, — X)P + (Y — Y (1)

This general combination provides basic information on the
distances between all types of neuron. We therefore included a dif-
ferent tuple in a subprocedure.

The basic distance (B} can be modified by a distance factor (f),
and it is possible to change this interactively in the program in order
to investigate the pattern formation. The modified distance
parameter L; is calculated with formula (2).

= @
f

We used a planimetric algorithm to estimate the maximum
diameter D,,. Combined with the second tuple member this gives
the sum of the radii of two neurons (3).

Dy D
D g )
2 2

The parameters L; and D; were combined in the form of an in-
equality (4). The inequality can be interpreted as a selection
criterium (C). C becomes true if Dy (3) is equal to or greater than
L: (2). Therefore only those cells of a certain relatively large size
and with a relatively small distance were accepted as cluster
members.

If the

L = Dy “

criterion is fulfilled a tuple is selected.

The variation of f defined by the investigator defined for values
between 0.6 — 0.8 allows one to determine contact clusters and, for
1.0, to calculate neighbourhood clusters (Schmitt 1991). With these
formal tools it is possible to determine different orders of neuron
type specific vicinity, Neighbourhood cluster analysis (NCA) is
valid with a f value of 1.0, whereas contact cluster analysis requires
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f = 0.6. This empirical factor determination is based on a visual
impression of neuron contact frequencies.

A practical introduction to point pattern analysis (PPA) has been
given by Diggle (1983). PPA constists of different testing pro-
cedures for point or event patterns in bounded or discrete regions.
If the points are randomly distributed within a bounded region,
this is known as complete spatial randomness (CSR or Poisson pro-
cess) (Diggle 1983). The second possible point distribution is a
cluster or aggregate (cluster process or Matérn cluster process
(MCL)). The third possibility is that of regular appearence (hard-
core process or Matérn hard-core process (MHC)).

PPA provides methods for analysing these three basic point pat-
terns statistically.

We have used PPA as described by Diggle (1983) with 99 (p < 0.05
according to Ambartzumjan et al. (1993, p320)) simulations
for random distributed points (Poisson process) and the calculation
of OD. If 1300 neurons were evaluated in one putamen, the gravity
centers of these 1300 neurons were randomized within each of the
99 simulations, and all distances between the neurons estimated.
The result of such a simulation cycle is the empirical distribution
function (EDF) (Diggle 1983). The EDF consists of 4 curves
(Fig. 1). The thinner curves enclose a random space where the CSR
is accepted. The upper is called the upper simulation function
(USF), and the lower the lower simulation function (LSF). The
middle interrupted line represents the means of all simulations, The
observed distances (ODF) are compared with these three CSR
characterizing curves. If the ODF lies between the USF and LSF,
the CSR hypothesis is accepted (i.e. null hypothesis) (Fig. 1). A
significant point aggregation (MCL) is present if the ODF exceeds
the USF (Fig. 4). If the ODF lies below the LSF, the arrangement
of neurons is regular (MHC) (Stoyan et al. 1987, pp. 146 — 148)).
We used two basic tests from PPA: the H(t) and the G(t) test. The

Nearest neighbourhood test
Tuple 66, M310

Poisson

®
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Fig. 1. Graphic representation of a point pattern analysis (PPA) of
the neuron type tuple 66 of the human putamen.

H(t) test checks whether the cell arrangement favours a general or
global MCL or an MHC. The G(t) test checks in a similiar manner
whether the nearest neighbouring cell centers have a certain signifi-
cant local topological distribution.

Testing significance is a very time-consuming randomization

‘process which must be carried out independently for each tuple for-

mation of all putamina with extended typification (n = 14).

Results

Visual point field analysis (VPA)

The diagrams in Fig. 2 represent plots of putamina from a
25 (left) and a 100 (right) years-old normal human brain.
The plots in Fig. 2a represent a survey on the whole neuron
population. In diagram 2b only type 1 neurons have been
plotted. The territories of low type 1 neuron frequency are
marked in diagram b. In diagram 2c¢ type 6 neurons are
shown. Those territories are marked which have a low
population of type | neurons. The type 6 neurons show a
distribution similar to that of the whole field (Fig.2a).
Figure 2d also represents only type 1 neurons, with ter-
ritories containing a low frequency of type 6 neurons within
the type 1 neuron population marked in outline.

Figure 2 a appears to confirm the hypothesis of randomly
distributed neurons within the striatum put forward by
Spiegel (1919); Vogt and Vogt (1920); Foix and Nicolesco
(1925); Kemp (1968); Fox et al. (1971); Lu and Brown (1977);
Kemp and Powell (1971); Battcher (1975) and Tennyson and
Marco (1973). If, however, a separating plot of neuron types
is drawn, a specific arrangements of the neurons can be
recognized.

The VPA's show territories which are nearly free from
type 1 neurons, but are covered with neurons of type6
(Fig. 2b and 2c¢).

Nearest neighbourhood analysis (NNA)

Figure 3 shows an NNA diagram of the same two brains as
in Fig. 2. Each cell is marked by a point and connected by
a line to its nearest neighbour cell.

The NNB chains are a peculiar feature of these connec-
tions. They can be simple chains, circular connections and
ramifications or combinations of circular ramifications.
The shortest chain consists of 2 members (a tuple). We have
classified and averaged the nearest cell center distances for
all neuron tuple of the brains examined. These data were us-
ed to construct the smoothed graphs of a particular neuron
tuple. The curves were compared with curves of NNA of
pseudorandomized cell gravitation centers (RDC) of equal
size (Fig. 4 and 5). A conspicuous difference was found in
the type 6 population, which shows an initially steep curve
segment and a bimodal distance distribution. These features
are not present in the RDC curve of tuple 66.
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a)

All neuron types.
Remark: no structured
neuron distribution
can be detected
<--M310 M1004-—>

b)

Type 1 neurons.
Remark: areas with
type 6 neurons are
not populated by
type 1 neurons.
<--M310 M1004--—>

ST s Type 6 neurons.
ot PR e Remark: areas with
; Q £ -_ _ | type 6 neurons are
c{; v marked. Same areas
L e g - 1 asinb), which are
i RS v N not populated by
o N 0 .. A type 1 neurons,
Q i it ( <--M310 M1004-——>

d)

Type 1 neurons.
Remark: areas with
no type 6 neurons
are marked. These
are populated by
type 1 neurons.
<--M310 M1004—->

Fig. 2. Graphic representation of a VPA of the human putamen (see text). In order to facilitate comprehension, the scale of the abscissa
is 2.5 times that of the ordinate.
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Fig. 3. Graphic representation of an NNA of the human putamen (left: putamen from a 25 year old individual; right: putamen from a
100 year old individual}. The abscissa and ordinate are drawn to the same scale.

459



Observed data
Tuple 61 and 66

Fraguency

888838438

a

Class

Randomized data
Tuple 61 and 66

Class

Fig. 4. Diagrams of the NNA distance distributions in the human
putamen of type 61 (thin line) and 66 tuple (thick line) for the
observed and randomized data. (class length: 5 pm)

The courses of OD and RDC are shown for 6 different tu-
ple. They look very similar to those of the RDC (Fig. 5).
Large populations have small oscillation spikes, whereas
higher oscillations are found in small neuron populations.
Significant differences between OD and RDC of tuple
members of the large neuron populations (1, 5, 6) given by
the DMT: 21, 41, 55, 62 and by the KST: 41, 46, 61 (Schmitt
1991). Analysis of NNB distance frequencies shows that the
curves of RDC are about 5 to 10 classes smaller then the OD
curves. Higher frequencies of smaller interneuron distances
are found in the first classes of the OD, and are followed by
a stepwise decrease. This indicates a tissue where the
neurons lie closer together than in randomized populations.
During planimetric evaluation we observed clusters of the
sparsely distributed neuron types 2, 3, 4 or 7. This arrange-
ment was tested with the KST, and was significant for the
tuple 32, 43, as was the DMT for the tuple 23, 27, 74, 75
(p < 0.03).

Contact Cluster Analysis (CCA)

NNA cannot take into account the direct geometrical rela-
tion and contact between neurons. We therefore used
cluster analysis (CA) with a distance factor f. Tables 1, 2

and 3 represent calculations with different distance factors.
The mean number of clusters increases up to f = 1 and
then decreases, because although the number of neurons
increases per cluster, the total number of all neurons is still
the same.

Table 2 shows the dependence of cluster size upon f. This
is demonstrated by the relatively large number of clusters
greater than 2 cells. For f = 2.0 about half of all clusters
consist of more than 2 cells. For f = 1.0 the ratio varies
from 10 (with 2 cells) to 4 (with more), and for f = 0.6, from
45 to 6.

Table 3 shows the influence of f on the mean distances
between the cells of a cluster for OD (original data) and
RDC (randomized data). With increasing f, the distances of
the RDC are generally greater than for the OD.

Additional calculations were made with the two special
randomization modes as mentioned in ‘Material and
methods’, but only for an f of 1.0, and for the RDD
(diameter only) and RDDC (diameter and coordinates).

The mean distances between cluster members increase
within RDD (14.47um) and RDDC (16.02 pm)
(OD: 12.69 um, RDC: 13.07 um). This indicates a relation-
ship between the number of randomized variables and the
decrease in compactness of the clusters.

To consider first of all the results of CCA: In the
estimated area of each putamen we found 122 CCA-clusters
with a mean cluster size of 2.2. The tuple of clusters have a
ratio to triple and quadruple of 45:5:1, which is higher
than in the RDC data with 35:5:1. The mean distance be-
tween the centres of neurons is 7.44 um, which is about the
same as in the RDC.

With the NCA (Fig. 6) we found out that OD and RDC
values for the types 2, 5, 6 and 7 lie closer together in the OD
(U-test: p < 0.01) as in the RDC. Especially interesting are
the type 6 neurons. PPA gives more insight in their spatial
distribution.

RDC values for the types2, 5, 6, 7 lie in OD closer
together (U-test p < 0.01) than in RDC. The meaning of
this for type 6 neurons will be discussed in the next section.

The point pattern analysis (PPA)

PPA (Diggle 1983) offers a concise statistically analysis of
the different neuron type assemblies (for details see
‘Material and methods’). Fig. 7 shows the results for both
EDF types H(t) and G{t) of 14 completely typed putamina.

The thick line of the large neuron tuple 44 (H(t) in
Fig. 7a) crosses the LDF in the upper half. Therefore the
type 4 neurons are arranged according to distance, which is
significant and not random. This is in accordance with the
visual impression. However, the hard core process is signifi-
cant only for large interneuron distances. The tuple 11 be-
tween the neurons of the most frequent type 1 shows, in the
near distances within the G(t) EDF, a significant hard-core
process. This means that the distances from cells of this type
to other cells of the same type is greater than that predicted
by CSR.
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Fig. 5. Diagrams of the NNA distance distributions in the human putamen. (class length: 5 um)
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Table 1. Result of the cluster analytical method with different
values of f. The mean number of cluster elements is for f = 2.0
higher than the neuron number, because one neuron can be con-
nected to serveral others.

f mean mean number mean cluster mean frequency
number of cluster size of cluster
of clusters elements elements to
all neurons
20 246.0 2826.4 6.7 241.0
1.0 291.2 891.4 2.5 56.0
0.8 2163 524.4 2.4 334
0.6 1219 263.4 2.2

17.9

Table 2. Dependence of ratios of mean normalized cluster size fre-
quencies upon variations in f.

f modus cluster size ratios
2 3 4
2.0 oD 3 2 1
RDC 3 1 1
1.0 oD 10 3 1
RDC 9 3 1
0.8 oD 21 4 1
RDC 12 3 1
0.6 oD 45 5 1
RDC as 5 1

Table 3. Summary of the main results of the clusteranalysis with
different values of f and different randomization modes (mean
values). D is the BEuclidean distance in pm. C is the mean diameter
of connected neurons and C/t is the quotient of C and section
thickness.

f oD RDC
D C C/ D L& Crt
0.6 7.44 16.77 0.92 7.53 17.76 0.97
0.8 10,04 17.06 0.94 12.36 19.80 1.08
1.0 12,69 17.20 0.94 13.07 17.60 0.95
2.0 2557 17.09 0.94 40.66 1717 0.94
RDD RDDC
1.0 14.47 19.53 1.07 16.02 19.62 1.07

The type6 neurons in Fig. 7c show quite different
behavior, because their ODF lies significantly above the
statistical border. This means that type6 neurons are
associated with small intercellular distances. We have seen in
the CCA analysis another expression of the same fact, also
in accordance with the visual impression. The PPA is
therefore able to discriminate statistically between different
distribution functions.
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Fig. 7. Point pattern analysis diagrams of the human putamen.
Every process has been tested in each of 99 simulations (p < 0.05).
The sample size is 14.

a: general H(t) test. b, c: local G(t) test. For more details see text.
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Discussion

Various structure analysis (SCA) procedures have provided
a new method for the mathematical description of specific
arrangements of different neuron types. Prerequisites for
this method are the use of a staining which distinguishes
between different types, and measurement in terms of an
established morphometric procedure. We have developed a
general approach to the evaluation of different histological
structures; for example, nervous tissue.

The measured values must be corrected for the embedding
shrinkage (Haug 1979; Sass 1982a, b). The factor R, for
correction of the measured distance (D)) to the distance in
the fresh tissue D, is performed by the formula (5).

A D,

D, = 2 g (5)
R

The projection area is corrected by taking the cubic root of

its square. This correction is necessary for all SCA-pro-

cedures. We decided to use only sections with a thickness of

approximately 20 pm because the counting error decreases

with increasing thickness (Treff 1963, 1967). We have

minimized this error by counting only neurons with a

nucleolus.

Visual point analysis (VPA) provides an artificial cytoar-
chitectonic image (Fig.2) and determines the correct
distribution of some or all types of neuron. We found out
that type 6 neurons are located in smaller fields which are
free of or only sparsely occupied by the most frequent type 1
neurons. It is possible that this arrangement accords with
the striosomes (Graybiel and Ragsdale 1978, 1983; Gerfen
1985; Graybiel 1990; Goldman-Rakic 1982; Goldman-Rakic
and Selemon 1990). However, this must be confirmed by
acetyl cholinesterase enzyme histochemistry or choline-
O-acetyltransferase immunohistochemistry.

Nearest neighbourhood analysis (NNA) provides a
cytoarchitectonic image (Fig. 3) and connects all neurons
with their nearest neighbours. The values of NNA are used
for statistics and distribution functions. With these pro-
cedures we determined whether the actual distribution is
random or not. The construction of Poisson distributions by
the relevant mathematical methods allows one to assess the
neuron type topology.

The type6 neurons are arranged in a significant ag-
gregate. This was tested by NNA, CA, and PPA and based
on electronmicroscopic findings (Schmitt 1991). Using CA
(Fig. 6) those neighbours can be identified which have a
distance factor f not exceeding a certain distance. NCA was
carried out with an f of 1.0. Therefore, those neurons were
regarded as being connected which lie near together,
although they were seldom in direct perikaryon contact.
Contact cluster analysis (CCA) with f = 0.6 restricts the
distance to a value in which the contact of cell body with cell
body is probable. For the type 6 neurons, CCA reveals a
number of contacts. One problem is that the neurons can be
situated near the upper or lower border of the histological
section. Without direct contact, their gravity points might

lie within an f of 0.6. In our experience these cases are rare.
Table 3 shows that the relevant mean diameters lie within the
section thickness.

For obtaining more information about type relations, the
mathematical terminus tuple proved to be useful. A tuple
consists of two neurons and is named after the number of
each type. A tuple with equal numbers consits of neurons of
the same type.

Point pattern analysis (PPA) is, even for a fast PC, a time-
consuming method, since it is based on estimations of all
distances between the neurons. With the PPA methods one
obtains information if the relevant neurons are concentrated
in clusters, regularly (Matérn hard-core process) or ran-
domly distributed (Poisson process). The type 4 neurons
have a tendency to lie in regular formation at large in-
tercellular distances. This can be seen more clearly within
the population of type 1 neurons, which however involves
only the smaller distances. On the other hand, the type 6
neurons have a tendency to lie in clusters close together.

The special arrangements of type 6 and type 1 neurons
make it possible to survey the SCA-procedures which were
used. With NNA, CCA and PPA, they reveal a special
feature, which is the aggregation of smaller clusters, with
perikaryon to perikaryon contact (type 6 neurons) or ‘keep-
ing their distance’ (type 1 neurons).

The influence of certain border sizes on SCA results will
be examined in the near future. We also hope to develop
SCA methods and speed up computation time (Preparata
and Shamos 1985; Moret and Shapiro 1991; Chen et al.
1992; Saxl 1993) in 3 dimensions, in order to get more in-
sight into structural relationships of the neuronal cytoar-
chitecture.
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