Reprinted from ANALYTICAL AND QUANTITATIVE CYTOLOGY aND HISTOLOGY
Vol. 22 No. 2, April 2000

nalytical and Quantitative Cytology and Histology

Topologic Distribution of Different Types of
Neurons in the Human Putamen

Oliver Schmitt, M.D., Reinhard Eggers, M.D., and Herbert Haug, M.D.

OBJECTIVE: To test the assumption that the various
types of neuron in the human putamen appear to be ran-
domly distributed and to quantify the way in which they
are arranged, stochastic geometry, multivariate analysis
and the interactive evaluation technique were employed.
STUDY DESIGN: Twenty-seven human putaming
without demonstrable signs of neurologic change were
dissected out, fixed in 4% formalin and embedded in
paraffin. The 20-um paraffin sections were stained in an
aldehyde-fuchsin and cresyl-violet solution, which makes
it possible to distinguish between seven different neuron
populations in the putamen. The gravity centers, size
and form factors of these neurons were determined mor-
phometrically under a light microscope. The data ob-
tained were used to calculate the spatial distribution of
the neurons by interactive and siructure analytical
methods.

RESULTS: Visual point field analysis revealed an irreg-
ular arrangement of the different types of neurons. Point
process analysis detected a significant hard core process
of type 1 and a cluster process of type 6 neurons. With
nearest neighborhood analysis, significant differences
were found between certain populations of neurons and
Poisson processes. Comparison of the results of multi-
variate cluster analysis with the investigator-dependent
results of visual point field analysis showed clear differ-
ences.

CONCLUSION: By means of structure analytical meth-
ods, the arrangement of different populations of neurons
can be demonstrated. Some neuronal distributions are
detectable only by using one of these techniques. The
question of random or nonrandom distribution of the
neurons in the human putamen can now be answered de-
finitively: arrangement of the different populations of
neurons is structured. (Analyt Quant Cytol Histol
2000,22:155-167)

Keywords: neurons, putamen, multivariate analy-
sis, stochastic processes, cluster analysis.

The debate about the spatial distribution of the dif-
ferent types of neurons in the human putamen was
initiated by Spiegel.*? It has since been continued
by Vogt and Vogt,” Foix et al,? Kemp,2! Fox et al,®
Kemp et al,?’ Tennyson et al, 3% Béttcher et al® and
Luetal*? and possibly brought to a satisfactory con-
clusion by Graybiel and Ragsdale!2 with their con-
cept of striosomes and matrisomes.!® The quantita-
tive and qualitative results of cresyl-violet staining,
silver impregnation, enzyme histochemistry and
immunohistochemistry represent the outcome of a
large number of cytoarchitectural methods of in-
vestigating the arrangement of the neurons. All
those methods have one thing in common: they do
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not depend upon quantification of spatial arrange-
ment. However, the structural parameters befween
cells have been systematically determined?523.27,28
because a prerequisite of the proper functioning of
any neuronal system is its correct structural organ-
ization. The precise position of neurons in space,
their processes and their connecting synapses is es-
sential if they are to function systematically.!-132%

We have summarized all the methods used for in-
~ vestigating the structure and spatial relationship
between distinguishable objects under the term
structure analysis 3031 This is meaningful with re-
gard to methodologic classification since modified
and self-developed techniques, stochastic geometry
and multivariate analysis have been used.

The aim of this study was to determine the spatial
distribution of each type of neuron in the normal
human putamen by means of various analytical
procedures. This is important because of the func-
tional implications of the structure and distribution
of those neurons that make up the various complex
networks. The application of multivariate methods
to the distribution of neurons in the human puta-
men is reported below for the first time. The inves-
tigation of these techniques was necessary in order
to compare the classifications of fuzzy neuronal dis-
tribution patterns arrived at interactively by inves-
tigators using various types of automated classifica-
tion. All the methods described below are em-
bedded in a consistent theoretical framework. Their
application to such unique data sets has not been re-
ported before.

The formal structure, application and results of
the different structure analytical procedures can be
compared within large samples. Finally, this frame-
work and its application to the present investiga-
tion are explained in detail.

Materials and Methods

The investigation was based on 27 human putami-
na from subjects without any signs of neurologic
disease and with a uniform age distribution (25-100
years; X =57.5). The brains were fixed in 4% forma-
lin diluted with a 0.9% sodium chloride solution.
Embedding was carried out as described by
Haug.'® Histologic sections, 20 um, were cut and
mounted on gelatinized slides.

In order to distinguish between the types of neu-
rons in the putamen, each section was stained in an
aldehyde-fuchsin and cresyl-violet (AFC) solu-
tion.*31 AFC stain has a high affinity for neurolipo-
fuscins. The cytoplasm of the neurons is stained by
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the cresyl-violet component. The result is a richly
contrasted and detailed section that permits classi-
fication of seven morphologically different types of
neurons. In the terminology of Graveland et al,!!
type 1 and 2 neurons are comparable to spiny 1 and
2 neurons, type 3 with aspiny 2, type 4 with aspiny
3, and types 5 and 6 with aspiny 1. Type 7 neurons
are described below for the first time. A detailed de-
scription of the morphologic features of these types
of neurons has been reported by Schmitt et al.3!

The morphometric and stereologic techniques
have been described by Haug.15-17 In each putamen
the neurons were evaluated within an area of
2,349,675 um?, which included 675 optical fields of
59x59 mm?. Each neuron was measured planimet-
rically in the two dimensions of the microscopic
projection plane (Figure 1). This was done by means
of a magneto strictive table connected to a comput-
er. On this table a mouse that generates an intense
point of red light can be moved by the investigator.
This point is projected via a mirror onto the micro-
scopic projection plane. The investigator looks
through the microscope and can see the point ap-
parently in the plane of projection, where he can
shift it around by moving the mouse. A computer
program registers the movements of the mouse and
calculates the values of the coordinates of the two-
dimensicnal gravity centers, projection area, maxi-
mal diameter and form factor. The investigator has
to assign each neuron to its appropriate type.

In addition to the first order stereology, further
estimations with five different techniques were
made in order to quantify various aspects of spatial
distribution (second order stereology) of the seven
types of neurons.

All structure analytical programs were devel-
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Figure 1 Selup of the measurement devices used for the
morphometric evaluation of neurons in the human putamen.



Bl Figure 2 Overview of all the
methods used in this work.
(A) Visual point field analysis
‘ has to be carried out by a
human investigator, supported
| by a computer that displays
N the gravitation centers of the
2 neurons on a screen. Using a
‘ mouse, the investigator
outlines distinct regions in the
point field. (B} Display
‘ illustrating nearest
neighborhood analysis: (a)
. ‘ computation of the cell
,-"'3 3 nearest to cell 1, and (b} of the
£ cell nearest to cell 2. (c) The
distance between cells 1 and
2 is the same as that between

| gravitation
| centers

99 simulatiens of pain
Processes with the same
rumher of vijects like
in the origiral point
Calcalate MMA

/L.|-!'e=ih- diztances anl dietersine
e e e ased minimune in
#ach cless within the 5% simylations
Then covstruet ugper and lower
ervelope and add the distributior |
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af classitied destanes of the oigingl
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oped on x86 computers (Intel). Only the multivari-
ate cluster analysis (MCA) algorithms were written
in C++; Pascal was used for the others (Figure 2).

Visual Point Field Analysis (VPA)

VPA is a method of defining by inspection the bor-
ders of areas within which neurons are distributed

cells 2 and 1. Cell 3 is not the
nearest neighbor to either cell
1 or cell 2. (C) Sketch showing
the factors used for stereclogic
cluster analysis. The mean of
the maximal diameters of two
different neurons and the
distances to their gravitation
centers are used to decide
whether or not they ought to
be connected. (D) Multivariate
cluster analysis is used in
order to classify neurons into
groups, depending on their
positions relative to one
another. The result should be
the formation of classes or
groups. (E) Point process
analysis is a statistical analysis
of three different basic
patterns (Figure 3) of
distributed objects. The
original point process has lo
be evaluated and simulations
of virtual point processes for
determination of the upper
and lower envelope curves
established. If the empirical
distribution function derived
from evaluation of the
nonsimulated point field
exceeds the upper or lower
envelope, the point process is
not random.

at an exceptionally high or low density. It is a use-
ful technique if the complexity of the cytoarchitec-
tonics increases to a point where the classification
or segmentation of subregions becomes impossible
by purely numerical methods. A point field is a dis-
tribution of objects (in this case, neurons) in a finite
region or reference space. The principle of VPA was
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worked out by Haug!#+ and extended by Schmitt.?
The gravitation centers of a certain type of neuron
are plotted, for instance, on a computer screen. The
investigator next outlines regions of high and low
density; points are used to represent individual
neurons. A new neuron population is then super-
imposed onto the first image and the regions com-
pared. This is repeated for all possible types of neu-
rons. If these regional patterns also appear in other
putamina, they are considered to represent a regu-
larly recurring arrangement.

Nearest Neighborhood Analysis (NNA)

NNA is a method introduced into the biological sci-
ences by Clark and Evans.® It is based on the coor-
dinates of the gravity centers of the various neuron
types and depends upon systematic variation
(equation 1) of the matrix indices containing the
data records of the coordinates. This step is neces-
sary because all pairs of coordinates must be com-
bined in order to locate that neuron which is closest
to the first, second, and so on, in the data list or ma-
trix of the individual cells. For example, if one
wishes to find the cell nearest a particular cell in
focus, then the distances from all the surrounding
cells have to be calculated. The shortest distance is
then selected, and with this alone one can identify
the required “closest cell.” In order to find out
which neuron is nearest another specified neuron,
this systematic examination of variation in the dis-
tances between all the neurons is necessary. The re-
sult of such a variation involves two different neu-
rons and calculation of their Euclidean distance, d,
apart (equation 2). Equation 1 gives us the number
of necessary combinations of coordinate pairs. It
also shows how a systematic variation should be
calculated and how many neurons (r) or other ob-
jects should be combined within one step.

Kl

A(V)=

: (M
(K-1)!

A(V)=number of variations of gravity centers,
K = number of gravity centers of one population or a combi-
nation of populations, and
r=number of data sets (i.c., types of neurons) (in this case
r=2 because the distance between two neurons (pair of
objects or of data sets (PDS)) is under consideration).

L e i @

d(PyP) = Euclidean distance between I; and P, and
P =neuron with coordinates of the gravitation center at x
and y.
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A(¥) =K. (3)

A{¥)=number of variations of types to PDS,
K=number of types (K=7), and
1= number of PTN members (in this case is r = 2 because PD5
are considered).

Because different types of neurons must be taken
into account, the combination strategy becomes
more complex. This is because the types of neurons
(PDS) have to be combined in the first step. For ex-
ample, the nearest neighborhood distribution of
type 1 neurons was analyzed first. The systematic
variation (1) was therefore applied only to type 1
neurons (formally, this is described by 1—1). After
this, the nearest neighborhood distances from neu-
rons of type 1 to neurons of type 2 (1— 2) were cal-
culated and the procedure extended.

The number of possible arrangements of the
seven types of neurons into pairs of types was de-
termined by using the combinatorial scheme al-
ready described. It can be calculated by means of
equation 3.

In addition, higher PDS combinations were con-
structed and a chaining grammar formulated in
order to quantify the type sequences and the algo-
rithmic k-nearest neighborhood investigated. This
means that the sum of the nearest neighborhood
distances over a defined number of neurons (k) was
determined. Such calculations are interesting be-
cause they provide information about the spatial
distribution of the different types of neurons.

The calculation of nearest neighborhood dis-
tances was also employed in the point pattern
analysis section. The difference between the
method used here and that of point pattern analysis
lies in the statistical analysis of the nearest neigh-
borhood distances.

Stereologic Cluster Analysis (SCA)

Stereology provides methods of determining three-
dimensional parameters from two-dimensional val-
ues. This kind of quantification, which is based on
small samples, has many advantages over counting
all the cells or structures of interest (sampling).
Cluster analysis is a term derived from multivariate
statistics. There are many different cluster analyti-
cal methods that may be used to detect statistically
significant clusters or groups of data. These meth-
ods are of two kinds: (1) those which are able to col-
lect single data points to form large clusters or
groups, and (2) those which subdivide clusters that
already exist.



Volume 22, Number 2/April 2000

The new term SCA combines the principles of
both stereology and cluster analysis. The contribu-
tion of stereology to SCA lies in the fact that it em-
ploys such parameters as the maximal diameter of a
cell or, in other words, additional morphometric
parameters (size, roundness, etc., of biologic ob-
jects). The contribution of cluster analysis is that it
offers a method by which groups of cells or neurons
may be constructed. This involves calculation of the
distances between certain objects and use of such
criteria as maximal diameter.

Some types of neurons are situated so close to-
gether that under the light microscope their cyto-
plasm appears to be confluent. In order to find out
if this apparent arrangement occurs in a random
fashion and to what extent it differs between one
population of neurons and another, it was neces-
sary to develop a new technique, one that takes
both the size of the neurons and their location into
account. The largest diameters and the coordinates
of the gravity centers of neurons could then be in-
cluded in the subsequent calculations. SCA also
makes use of a certain arrangement of the combina-
tions, the number of cell combinations in the data
record having been determined by equation 4. K is
the number of neurons of a certain type that are
necessary for performing the calculation described
above, and r is the number of neurons to be com-
bined in a single step of the calculation (in this case,
two).

(K+7r-1)!

A€} =number of twe-tuple combinations,
K =number of types of neurons (K=7), and
7 =number of PDS members (in this case r =2 because we are
working with PDS).

Before the calculation is started, PDS have to be
assembled. All PDS combinations using equation 5
were investigated.

K!

A(C)= :
© r(K—r)!

)

A(C) =number of combinations of gravity centers,
K =number of gravity centers of one or combinations of pop-
ulations, and
r=number of PDS members {in this case r=2 because we are
working with the distance between two neurons).

SCA was applied to each PDS combination in
order to detect the different arrangements applying
to the different types of neuron.

At the beginning of the calculation, all the neu-

Neurons in the Human Putamen

rons are unclassified —that is to say, no relationship
between them has yet been determined. If a neuron
is related to another neuron (“partner A”) that is
closest to it, then its partner A will be assigned to
the first neuron, and an assignment is said to exist
between them. In spite, however, of this assign-
ment, only the first neuron is said to be classified. A
new partner A must then be determined for the sec-
ond neuron. This may well be the first neuron itself,
but if it is a different neuron, then the original part-
ner A can also be said to be classified. The process is
then continued until all the neurons have been clas-
sified: the end of the classification procedure has
been reached.

Now, taking the above example into account, a
“chain” is generated by the algorithm, as follows.
The first neuron having been assigned to the second
one, a two-node chain can be said to exist. The sec-
ond neuron is then assigned to a third one, and the
three neurons, which are now interconnected by as-
signments, constitute what we describe as a “clus-
ter.” However, since an additional parameter (max-
imal diameter, obtained by measurement) can also
be introduced into the calculation, the procedure
may be adapted to more than two dimensions. We
call this procedure SCA.

The assignment of unclassified neurons within
the algorithm to other neurons, or to neurons that
have already been classified, is controlled by the so-
called selection criterion (C) of equation 7. C is the re-
lationship between the size and distance of a PDS. If
d (distance) is smaller than or equal to the sum of
the two maximal radii (equation 6) of a PDS, then C
is confirmed, and the PDS elements are classified as
a new cluster. New, unclassified objects can natu-
rally be added to existing clusters, and in this way
the clusters will grow.

Up to now, the exact gravity center distance, d
(neighborhood cluster analysis [NCA]), has been
used. This means that neurons that are lying closer
to each other than to more-distant neurons may be
said to constitute a cluster. In order to select neu-
rons that are (within a defined limit) “close togeth-
er,” C can be modified by a distance factor, f, by
which d is multiplied in equation 8. If fis <1, C is
valid only if the neurons are lying very close to-
gether (contact cluster analysis [CCA] f=0.6). If,
however, f is > 1, neurons with larger distances are
said to be connected.

D, D
D R — -—r <+
mi{i.f} 2 9

HH:

& (6)
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D, =maximal diameter of a neuron.

frd (P, ij) LD (7)

Al D ®)

The distance factor can be considered a filter. If a
small value is chosen, many neurons will not be se-
lected, or “filtered out.” It is also possible to follow
the formation of clusters by increasing the distance
factor stepwise (Table I).

MCA

Investigation of the spatial distribution of neurons
by cluster analytical methods!® was introduced fol-
lowing the results obtained by VPA. Different mul-
tivariate statistical algorithms were applied to the
data sets in order to discover an algorithm capable
of producing results comparable to those obtained
by VPA. Enclosing clusters within a large, sur-
rounding cluster might seem at first sight to be in-
consistent. However, the methods were applied to
each type of neuron separately, so that “cluster-
overlapping A” or “cluster-embedding A” between
different types of neurons could be taken into ac-
count.

In particular, the following procedures were em-
ployed: single linkage (nearest neighbor) (equation
9), complete linkage (farthest neighbor) (equation
10) and average linkage (equation 11) as hierarchic
or agglomerative methods and the K-means (equa-
tion 12) as a partitioning technique. Single linkage
starts at the finest partition of the data set. At this
first step, each neuron is considered a cluster. Those
neurons are then connected which are closest to-
gether. In equation 9 this process is expressed as a
minimalization task. After this first clustering step,
those clusters are connected which are nearest to-
gether and the procedure repeated until a certain
number of clusters have been built up by the algo-
rithm. The number of SCA clusters is equal to the

Table | Results of SCA with Different f

f %n XC Xs xf

2.0 246.0 2826.4 6.7 241.0
1.0 291.0 891.4 25 56.0
0.8 216.0 524.4 2.4 334
0.6 121.9 263.4 2.2 17.9

The mean number of connections (Xc) within a cluster is higher for =2
than the neuron number because one neuron can be connected to several
others. The mean number of clusters (%n), mean number of connections,
mean cluster size [Xs) and mean frequency of cluster elements in relation
to the whole population (%f) decrease with decreasing f.
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number of clusters detected by VPA, the complete
linkage method connecting only those that are far-
thest from each other. The distance between the
clusters must therefore be maximized (equation 10).
Another criterion for building clusters is defined
within the average linkage. The average linkage
method starts at a maximal partition of objects; that
means that each neuron is considered a cluster. The
algorithm then connects only those neurons lying at
the smallest average distance apart. The final proce-
dure starts from one large cluster of interconnected

- neurons, and the algorithm then halves this large

cluster; this process is repeated further. Equation 12
lays down the procedure: until the number (k) of
clusters is reached, search the data set (P) in all di-
mensions (], here ] =2) for a partition that will pro-
duce the smallest distance between them. All algo-
rithms continue to analyze the data sets until the
target number of clusters defined by the investiga-
tor is reached. It is also possible, however, to define
a criterion that should optimize the construction of
clusters. The internal structure of the cluster is de-
pendent upon the number of clusters that should be
generated by a specific algorithm.!?

Different kinds of distance measurement are test-
ed by these methods. For NNA and SCA the Eu-
clidean distance measurement (equation 2) is used.
In order to explore the effects of some important
distance measurements contained in the cluster an-
alytical algorithms, the general formula for distance
measurement is described.

The Minkowski g-metric (L q-distaﬁces) (equation
13) is a general formula defining different metrics
and distance measurements. A city block or chess
board metric is given if =1 (equation 14). This sim-
plest Minkowski metric is also called the L;-norm.
The next metric is the Euclidean metric (equation 2),
or the L,-norm. Finally, the Tschebyscheff metric
(equation 15), or L_-norm, is applied.

AP, i Py sy ) —>min (9
nedr E H # .
d( wa,_.;,j me,ym) — max (10)
n# .
Ky Kut
1 11
d(K,;K,)=——— Z Z d,,, — min L)
KyxK,, nek, mekK, n#m
K, =class K,

K, =class K,

Ky = number of elements in class K,

Ky, = number of elements in class K,,,, and

} = mean distance between class K, and class K.

nem

d(K
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K P T
X (K) = Z Z > (P,;— K,;) > min. (12)
k=1p=1 j=1

X(K) =square of the deviation of the distance between P and K,
J = dimensions,
K =number of cluster centers, and
P =number of points or gravity centers.

1
IP,~P, 107, g>1. (13)

mij

4P, P,)=(

—
il
e

d = general Minkowski distance metric,

n, m=number of gravity centers,
P =point or gravity center (if ] = 2: {x;y}, if ] = 3: {x;y;z}), and
q=L-norm.

I
dl(Pn; Pm) = E IPH;' = 'ijl 4 (14)
f:}

/
a (PP, )= Y max {1P,

ij_P

il s (15}

_.1':1

Point Pattern Analysis (PPA)

PPA is a method that analyzes point patterns in one
or more dimensions statistically. An intuitive defi-
nition of a point pattern is the distribution of objects
(in this case, neurons) distributed along a line or in
a plane, space, and so on, according to the number
of dimensions. In this study, continuous structures
(i.e.,, neurons) were observed and then transformed
into discrete structures in the data sets. In this case
the transformation was determined by the meas-
urement taken by the investigator. We are therefore
using only the discrete formulas for the analysis of
neuron organization.

The discrete objects can be points or symbols for
cells. Point pattern analysis is used to detect struc-
ture in the spatial distribution of the neurons or
points. This means that PPA is capable of analyzing
a point distribution that is significantly different
from a random distribution of the same number of
points within the same reference space. The struc-
ture or pattern of points can be a clustering of ob-
jects, a distribution of points a certain distance apart
(hard core) or a random process (Poisson process).
A “process” is a distribution of “events” or objects
within a particular dimensionality.

Two basic processes were employed here for the
analysis of the distribution of neuron types. The
global (H(t)) and nearest neighborhood (G(t)) tests
of PPA were described in detail by Diggle.” Each
test distinguishes between hard core processes,
cluster processes (neurons spatially aggregated)

MNeurons in the Human Putamen

and a Poisson process (equation 16). Such a Poisson
process can be produced by a pseudorandomizing
function (Monte Carlo simulation). If the neurons
are distributed according to the Poisson distribu-
tion, the null hypothesis for so-called complete spa-
tial randomness (CSR) is true.

Pin=k) = % e, (16)

n=number of neurons, and
A = mean of the distribution.

Because each type of neuron as well as certain
combinations of neurons must be analyzed, a com-
binatorial scheme is again required. Therefore, the
PDS was analyzed by using the combination
scheme laid down by equation 5. These combina-
tions of PDS and the calculation of their interevent
distances, tor (tq:dq (P, P.) {q=2}) (equation 13)
result in their empirical distribution function (EDF),
a concept introduced by Diggle. The EDF is based
on distance calculations derived from measured ob-
jects or neurons (“empirical objects A”) and not, for
instance, from a theoretical distribution, such as
that of equation 16. The distances between neurons
(or interevent distances) are calculated within a fur-
ther combination of data points in the algorithm.
This analysis can therefore be regarded as a hierar-
chic combination of data points within a combina-
tion of neuron types. EDF is normalized between 0
and 1 by equation 17 for H(t) and by equation 18 for
G(t). H(t)is calculated for all the distances between
neurons, whereas G(t) determines the nearest
neighborhood distances, t,. In addition, 99 simula-
tions were performed in order to generate 99 Pois-
son point processes. These Poisson distributions
consist of the same number of points as in the dis-
tribution that was not simulated, and the coordi-
nate maxima and minima (reference space) are also
the same.

The H(t) and G(t) algorithms are then used to an-
alyze these simulated distributions. Each calculated
t; is assigned to a 5-pm-wide class (number of class-
es, 128). I, for example, two neurons were to have a
distance apart of 18 um, these distances would be
assigned to class 4, and two new results would be
entered that were new to this class. After these in-
terevent distances were classified, the maximum
and minimum frequency of each class within 99
simulations was determined. Based on these maxi-
ma and minima frequencies of the analyzed ran-
dom point processes, the so-called upper (U(t)) and
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lower simulation envelopes (L(t)) were calculated.
The upper simulation envelope represents the max-
ima of frequencies within 99 simulations, whereas
the lower simulation envelope shows the minima of
the frequencies. This kind of presentation of the
limits of a random distribution has the advantage
that one requires only one diagram in order to de-
cide whether a certain interevent distance is not
random, meaning that it lies outside the envelope.
EDF, U(t) and L(t) are plotted in one diagram (Fig-
ure 3). If EDF exceeds U(t), a significant (P<.01)
cluster process is detected, and if EDF falls below

Nearest neighborhood test
Tuple 66, M310
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Figure 3 Result of a point process analysis of PDS 6 -6 of ane
human putamen using the nearest neighborhood method. The
typical arrangements of three point processes are shown in the
boxes. The abscissa represents the normalized distances and the
ordinate the narmalized frequencies. The diagonal curve (G{t)
(broken line) reveals a Poisson distribution surrounded by the
curve of the upper envelope. This is very steep, about 0.2 G,
and lies above the G(U) curve and the curve of the lower
envelope, which is very flat, about 0.2 (Git)), and that lies below
the Gt curve. The EDF curve lies above the upper envelope
curve (between 0 and 0.2 or 0.3 and 0.4 G(t)]. This means that
the distribution for small distances differs significantly from

a random distribution.

Figure 4 Graphic representation of a VPA in the human
putamen. In order to make the picture clearer, the x-scale is 2.5
times greater than the y-scale {indicated by the two arrows at the
top right diagram). The outlines were produced by a drawing
involving the comparison of each of the neuron populations.

L(t), a significant hard core process is detected. If
EDF takes its course within the limits of U(t) and
L(t), then the point process is Poisson distributed,
and a CSR exists.

H) = (L(”z_—l)—) Nt < B, (17)

N{t; =t)= number of distances.
G (H)=n N(t,<H). (18)
N(t, <t) = number of nearest neighborhood distances.

In order to cbviate a biased calculation, not all
neurons lying close to the evaluation border were
used. If their distance to the border was smaller
than their maximal diameter, they were rejected.>t

Results
VPA

VPA shows clear inhomogeneity of the spatial dis-



Volume 22, Number 2/April 2000

Table Il Mean Nearest Neighborhood Distances of All
Variations of PDS in the Human Putamen

PDS element {ium)

Type 1 2 3 4 5 6 7

1 20 138 413 268 86 32 374
2 22 139 409 275 92 33 373
3 22 129 268 256 118 32 500
4 23 146 418 451 94 B 390
5 18 135 435 266 78 34 369
6 20 139 416 269 89 28 376
7 27 209 609 378 123 43 395

The distances between the PDS element 1 and other types in the first
column are small because this population has the highest density.

tribution of the different types of neurons. In Figure
4, VPA was applied to two different putamina. One
column with four images is shown on the left and
the other on the right.

In Figure 4, regions with high densities of type 6
neurons and no (or only a few) type 1 neurons are
interactively outlined. In regions that include type 1
neurons, no (or only a few) type 6 neurons were
found. Some regions containing certain types of
neurons are clearly separated, whereas others part-
ly overlap.

NNA
An NNA plot is represented in Figure 5A and B.

eurons in the Human Putamen
N inthe H Put

Table Il summarizes the mean distances between all
variations of types of neurons. Significant differ-
ences (P <.05) between the original distribution and
Monte Carlo simulaticns were found for PDS to be
2—>1,4->1, 555, 652 (Dixon Mood test) and
4—1,4—-6, 6—1 (Kolmogoroff-Smirnoff test). The
mean distances were smaller if one PDS member
had high spatial density (e.g., type 1 or 6). The mean
distances of the different types of neurons are sum-
marized in Table II. The mean distance of PDS 4 — 1
differs from PDS 1—4 because many neurons of
type 1 that are positioned close to one type 4 neuron
possess higher mean nearest distance than the same
type 4 neuron to its closest type 1 neuron.

Because there are many more neurons in popula-
tion 1, the mean distance from a type 4 neuron to
the closest neuron of population 1 is small (PDS
4—1:23 um). Starting with a data set of type 1 neu-
rons, it was possible to identify by calculation the
nearest neurons of type 4. Because many type 1 neu-
rons must be assigned to a few (sometimes distant)
type 4 neurons, the mean nearest neighborhood dis-
tance increases.

SEA

A plot of NCA with f=1.0 is shown in Figure 5C
and D. Some neurons are not connected because
they do not fulfill C. The results of the estimations
are shown in Tables I, TIT and IV. The statistical hy-

Figure 5 [A) NNA plot of all
types of neurons in the puta-
men from a 25-year-old indi-
vidual and (B) from a
100-year-old individual. (C)
For comparison, the results of
an NCA of all types of neurons
in the putamen from a 25-
year-old individual and (D) a
100-year-old individual are

shown, The x- and y-scales
are the same.
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Table Il Dependence of Ratios of Mean Normalized Cluster
Size Frequencies on Variations of f

f Mode CR=2 CR=3 CR=4
20 QD 3 2 1
RC 3 1 1
1.0 oD 10 3 1
RC 9 3 1
0.8 oD 21 4 1
RC 12 3 1
0.6 oD 45 5 1
RC 33 5 1

CR =cluster size ratio, QD =original data, RC = randomized coordinates of
gravitation centers.

pothesis of a nonrandom clustering of neurons was
tested using the U test. The mean distances of neu-
rons building a cluster were compared with the ran-
domized positionings of the types of neurons. The
neurons of types 1 and 5-7 are not randomly dis-
tributed (U test, P<.01). Furthermore, a systematic
modification of the simulation parameters (coordi-
nates, maximal diameters) was carried out. This
gave the following result: the mean distances be-
tween cluster members (Table IV, D) increase with
the increase in the number of randomized variables
(compare Table 1V, f=1.0). If f is increased to 4.0,
then each neuron will be connected. If it is reduced
to 0.3, only one small cluster will be calculated.
These values must be characteristic features of the
neuron population in the human putamen because
they were similar in all 27 brains examined.

MCA

Different cluster analytical procedures were ap-
plied to the data in order to compare the results of
MCA and VPA and to find out if there exists an au-
tomated procedure that produces results compara-
ble to those of VPA. The algorithms of MCA show
considerable differences in their cluster formations.
The results do not show any similarities to those ob-

cal and Quantitative Cytology and Histology

tained with VPA (Figure 4). The well-known phe-
nomenon of chain building from those of the single
linkage algorithm results in both extremely long
chains (Figure 6A) and extremely small clusters
(Figure 6B-D). In Figure 6A, four clusters are de-
picted: three small ones (outlined near the upper
border of the diagram) and a large, massively con-
nected chain, which is not outlined.

In order to compare the results of the different
distance measurements, the single linkage (Figure
6A-D) and K-means diagrams (Figure 6E and G)
are represented. The diagrams have all the same
scale. Each distance measurement leads to another
cluster formation. This leads to the particularly
elongated cluster structure shown in Figure 6F.
These results suggest that it is inadvisable to use a
standard algorithm with an arbitrary distance
measurement instead of the design of a cluster
analysis adapted to the problem or pattern. This
means that the results of VPA cannot be generated
by an MCA technique and that VPA cannot be re-
placed by MCA.

Point Pattern Analysis

This method provides a concise statistical analysis
of the different neuron type assemblies or PDS, in-
cluding all seven types. The thick line of the small
neuron PDS 6 —6 crosses the curve of the upper
simulation function (Figure 3). This means that the
clusters consist of closely situated type 6 neurons.
Furthermore, this process is significant (P <.05) and
is in accordance with the visual impression. The
PDS 1 — 1 between the most frequent type 1 shows,
in the near distances within the G(t) empirical dis-
tribution function, a significant hard core process.
This means that the distances from cells of this type
to other cells of the same type are greater than pre-
dicted by a completely random spatial distribution.

Application of all the structural analytical tech-
niques was examined for any possible relationship
to the age of the subject. The principal placement of

Table IV Mean Results of SCA with Different Values of f and Randomization Modes

oD oD oD RC RC RC RD RD RD RDC RDC RDC
f D C C/t D C Cft D C Cc/t D C C/t
0.6 7.44 16.77 092 7.53 17.76 0.97 — — — — —_ —
0.8 10.04 17.06 0.94 12.36 19.80 1.08 — — — — — —
1.0 12.69 17.20 0.94 13.07 17.60 0.95 14.47 19.53 1.07 16.02 19.62 1.07
2.0 25.57 17.09 0.94 40.66 1717 0.94 — - - — - —
0D =original data, RC =randomized coordinates, RD = randomized diameters, RDC= randomized coordinates and diameters, D =mean Euclidean distance

{um), C=mean diameter of connected neurons, C/t=quotient of C and section thickness.
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neurons in the human putamen does not change
with aging. Nevertheless, because of the normal
shrinkage of the human brain with advancing age,
the neurons in the putamen draw closer together as
the subject gets older.

Discussion

With the aid of structure analytical methods, a sig-
nificant cluster process of type 6 neurons and a sig-
nificant hard core process (the neurons distributed
at certain distances) of type 1 neurons could be re-

Figure 6 (A-D) Single linkage evaluation of neurons of type 1.
(A} Euclidean distance measurements for four clusters.

(B} Euclidean distance measurements for n/2 clusters. (C) City
block distance measurements for n/2 clusters. (D) Tschebyscheff
distance measurements for n/2 clusters. The expected number of
clusters is four, the same as the number of outlined regions of the
VPA of this population (Figure 10, right). (E-G} K-means

of neurons of type 6. The expected number of clusters is eight
{(Figure 1C, right). (E} Euclidean distance measurement.

(F) City block distance measurement. (G) Tschebyscheif distance
measurement. For details, see text,

vealed. NNA and SCA confirm these results. The
VPA is useful for the recognition of fuzzy point pat-
terns, the points of which overlap. So far, no proce-
dure of MCA has been found that can replace VPA
or that allows detection of those arrangements that
are close to the VPA results. It is clear that type 6
neurons forming clusters surrounded by type 1
areas will not be distinguished as a single cluster.
However, the MCA techniques used here are being
applied for the first time to just such data sets. We
searched regions similar to those generated by VPA
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as well as new structural arrangements of the whole
neuronal population.

In this study, two-dimensional neuron distribu-
tions were investigated. Further evaluations will be
undertaken in order to extend the analysis to three
dimensions and to compare smaller, three-
dimensional section volumes with the large, two-
dimensional section surface presented here.

So far it has not been clear whether a certain
arrangement of neuron types can be correlated with
the function of that pattern or if there is wavefront
processing of biosignals in the local circuits or in re-
gionally distributed neuron clusters. Nevertheless,
even from the physical point of view, it seems like-
ly that the time lapses between juxtapositioned neu-
rons are shorter than between neurons located at a
greater distance. Furthermore, it seems evident that
the signal transfer time over short distances is lower
than over longer distances. However, it is not
known whether the myelination pattern of the
axons and the neurophysiologic features of den-
drites are the same for all the different spatially dis-
tributed populations, and it is also true that certain
differences in the synapses can delay signal trans-
duction and influence signal processing in a spatial
arrangement of neurons.

This aspect of the packing and distribution of
neurons in a network was considered by Young?3®
and, more recently, by van Essen3¢ as well as by
Singer.32 However, they took into account only the
connectivity and neurogenetic features of neuronal
networks.

It is necessary to learn more about the morpholo-
gy (silver impregnation and neurotransmitter im-
munohistochemistry) of the types of neurons
differentiated by AFC staining and about their neu-
rophysiologic features. However, the possibility
that their distribution or structure may influence
neuronal function should be kept in mind.

Additional methods, such as tesselation analysis
and pair correlation function,?*3* are necessary to
describe the arrangement of neurons, not only in
the putamen, but also as a fundamental part of the
comparative studies of the spatial pattern of the
cerebral cortex in humans and other species by
structure analysis. The anisotropy of neurons in the
laminar and columnar regions of the cortex can be
analyzed by laminar-specific NNA. The columnar
regions involve highly anisotropic neuron distribu-
tions that can be quantified by texture analysis for
periodicity'® and orientation analysis.>* With re-
gard to Brodmann's area 33 in the cingulate gyrus,

'-l'a:nd Quantitative Cytology and Histology

additional problems arise because the degree of
lamination decreases here from six layers to a small
band of neurons. The hippocampal formation in-
cludes the highly variable distribution and lamina-
tion of different kinds of neurons. There is, apart
from a decrease in the number of laminars, a regu-
lar formation of clustered neurons in the entorhinal
region. Structure analytical methods should be se-
lected and applied to typical spatial arrangements
of the structures of interest—i.e., neurons and glial
cells. They are useful tools for detecting highly com-
plex distributions of neurons within the brain that
cannot be recognized by simple visual inspection.
Furthermore, such techniques can be useful for the
description and analysis of pathologic cell distribu-
tion. For example, they can be employed for the
identification of malignant tissue.24:25

Finally, structure analytical methods can be ap-
plied to the postmortem brains of patients who
have suffered from certain neurologic diseases and
also for research in developmental neurobiology.
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